Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Antibacterial Efficacy of a Dispersion of Silver Nanoparticles in Citrate Medium for the Treatment of E. faecalis: an In Vitro Study
PDF
HTML

Keywords

Antimicrobial efficacy
Silver nanoparticles
Sodium hypochlorite
E. faecalis

How to Cite

Rodríguez DDS, S., Ramírez DDS, MSc, T., Montero DDS, MSc, M., Chavarría DDS, MSc, PhD, D., Valle PhD, G., & Rojas MSc, N. (2016). Antibacterial Efficacy of a Dispersion of Silver Nanoparticles in Citrate Medium for the Treatment of E. faecalis: an In Vitro Study. Odovtos - International Journal of Dental Sciences, 18(2), 99–107. https://doi.org/10.15517/ijds.v18i2.23929

Abstract

The purpose of this study was to measure the antibacterial efficacy of a dispersion of silver nanoparticles (AgNP) in a citrate medium tested in two E. faecalis strains. AgNP were synthesized, and AgNP citrate medium (AgNP-CM) dispersion was prepared at a concentration of 100 μg/mL. The antibacterial efficacy of AgNP-CM dispersion was evaluated over two E. faecalis strains: ATCC29212 and a wild strain collected from human necrotic teeth. 5% sodium hypochlorite (NaOCl) and sterile saline solution were used as positive and negative controls. 5 and 30-minute contact tests were conducted and each experimental group were replicated 10 times. After 24 hours of incubation, the Log CFU/mL were calculated. The AgNP obtained showed spherical shapes and had 30-60nm size. 5% NaOCl was able to completely eliminate both E. faecalis strains in all groups, showing a significant statistical difference when compared to AgNP-CM dispersion and negative control groups. AgNP-CM dispersion showed a statistically significant decrease in Log CFU/mL averages (p=0,0006) when compared to the sterile saline solution for the ATCC29212 strain during the 30-minute time. Between the 5-minute and 30-minute groups, a significant bacterial count decrease was also observed (p= 0,0128). The antibacterial efficacy of the dispersion was greater for the ATCC29212 strain than the wild strain, were the effect diminished. AgNP-CM dispersion showed a significantly lower antibacterial efficacy against E. faecalis than the 5% NaOCl at the tested times. 


https://doi.org/10.15517/ijds.v18i2.23929
PDF
HTML

References

Zhang C., Du J., Peng Z. Correlation between Enterococcus faecalis and Persistent Intraradicular Infection Compared with Primary Intraradicular Infection: A Systematic Review. J Endod. 2015; 41(8): 1207-13.

Portenier I., Waltimo T. M. Haapasalo M. Enterococcus faecalis– the root canal survivor and ‘star’ in post-treatment disease. Endod Topics. 2003; 6 (1): 135-59.

Luddin N., Ahmed H. The antibacterial activity of sodium hypochlorite and chlorhexidine against Enterococcus faecalis: A review on agar diffusion and direct contact methods. J Conserv Dent. 2013;16: 9-16.

Kayaoglu G., Ørstavik D. Virulence Factor of Enteroccus Faecalis: Relationship to Endodontic. Crit Rev Oral Biol Med. 2004; 15 (5): 308-20.

Afkhami F., Pourhashemi S. J., Sadegh M., Salehi Y., Fard MJK. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent. 2015; 43 (12): 1573-9.

Karale R., Thakore A., Shetty V. An evaluation of antibacterial efficacy of 3% sodium hypochlorite, high-frequency alternating current and 2% chlorhexidine on Enterococcus faecalis: An in vitro study. J Conserv Dent. 2011;14 (1): 2-5.

Gandi P., Vasireddi S. R., Gurram S. R., Darasani K. Evaluation of the Antibacterial efficacy of Omeprazole with Sodium Hypochlorite as an Endodontic Irrigating Solution- An Invivo Study. J Int Oral Health. 2013; 5 (2): 14-20.

Davis J. M., Maki J., Bahcall J. K. An in vitro comparison of the antimicrobial effects of various endodontic medicaments on Enterococcus faecalis. J Endod. 2007; 33 (5): 567-9.

Hidalgo E., Bartolome R., Dominguez C. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chem Biol Interact. 2002; 139(3): 265-82.

Haapasalo H. K., Siren E. K., Waltimo T. M., Orstavik D., Haapasalo M. P. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J. 2000; 33 (2): 126-31.

Shenoy A., Mandava P., Bolla N., Raj S., Kurien J., Prathap M. S. Antibacterial efficacy of sodium hypochlorite with a novel sonic agitation device. Indian J Dent Res. 2013; 24 (5): 537-41.

Zehnder M. Root canal irrigants. J Endod. 2006; 32 (5): 389-98.

Wei L., Lu J., Xu H., Patel A., Chen Z. S., Chen G. Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today. 2015; 20 (5): 595-601.

Correa J. M., Mori M., Sanches H. L., da Cruz A. D., Poiate E., Jr., Poiate I. A. Silver nanoparticles in dental biomaterials. Int J Biomater. 2015; 2015: 485275.

Gomes-Filho J. E., Silva F. O., Watanabe S., Cintra L. T., Tendoro K. V., Dalto L. G. et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod. 2010; 36(10): 1698-702.

Ge L., Li Q., Wang M., Ouyang J., Li X., Xing M. M. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J. Nanomedicine. 2014; 9: 2399-407.

García-Contreras R., Argueta-Figueroa L., Mejía-Rubalcava C., Jiménez-Martínez R., Cuevas-Guajardo S., Sánchez-Reyna P. A., et al. Perspectives for the use of silver nanoparticles in dental practice. Int Dent J. 2011; 61 (6): 297-301.

dos Santos C. A., Seckler M. M., Ingle A. P., Gupta I., Galdiero S., Galdiero M., et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm Sci. 2014; 103 (7): 1931.

Wei L., Tang J., Zhang Z., Chen Y., Zhou G., Xi T. Investigation of the cytotoxicity mechanism of silver nanoparticles in vitro. Biomed Mater. 2010; 5 (4): 044103.

Flores C. Y., Minan A. G., Grillo C. A., Salvarezza R. C., Vericat C., Schilardi P. L. Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells. ACS Appl Mater Interfaces. 2013; 5 (8): 3149-59.

Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotech Adv. 2009; 27 (1): 76-83.

Bressan E., Ferroni L., Gardin C., Rigo C., Stocchero M., Vindigni V., et al. Silver nanoparticles and mitochondrial interaction. Int J Dent. 2013; 2013: 312747.

Gaillet S., Rouanet J. M. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms--a review. Food Chem Toxicol. 2015; 77: 58-63.

Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., et al. Silver nanoparticles as potential antibacterial agents. Molecules. 2015; 20 (5): 8856-74.

Markowska K., Grudniak A. M., Wolska K. I. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 2013; 60 (4): 523-30.

Singh R. P., Ramarao P. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol Lett. 2012; 213 (2): 249-59.

Sassone L. M., Fidel R. A., Fidel S. R., Dias M., Hirata R. J. Antimicrobial activity of different concentrations of NaOCl and chlorhexidine using a contact test. Braz Dent J. 2003;14(2):99-102.

Barros J., Silva M. G., Rodrigues M. A., Alves F. R., Lopes M. A., Pina-Vaz I., et al. Antibacterial, physicochemical and mechanical properties of endodontic sealers containing quaternary ammonium polyethylenimine nanoparticles. Int Endod J. 2014; 47 (8): 725-34.

Samiei M., Farjami A., Dizaj S. M., Lotfipour F. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. Mater Sci Eng C Mater Biol Appl. 2016; 58: 1269-78.

Manikandan R., Manikandan B., Raman T., Arunagirinathan K., Prabhu N. M., Jothi Basu M., et al. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 138: 120-9.

Kishen A., Shi Z., Shrestha A., Neoh K. An Investigation on the Antibacterial and Antibiofilm Efficacy of Cationic Nanoparticulates for Root Canal Disinfection. J. Endod. 2008; 34 (12): 1515-20.

Hiraishi N., Yiu C. K., King N. M., Tagami J., Tay F. R. Antimicrobial efficacy of 3.8% silver diamine fluoride and its effect on root dentin. J Endod. 2010; 36 (6): 1026-9.

Shrestha A., Shi Z., Neoh K. G., Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010; 36 (6): 1030-5.

Javidi M., Afkhami F., Zarei M., Ghazvini K., Rajabi O. Efficacy of a combined nanoparticulate/calcium hydroxide root canal medication on elimination of Enterococcus faecalis. Aust Endod J. 2014; 40(2): 61-5.

Shrestha A., Zhilong S., Gee N., Kishen A. Nanoparticulates for Antibiofilm Treatment and Effect of Aging on Its Antibacterial Activity. J Endod. 2010; 36 (6): 1030-5.

Junevicius J., Zilinskas J., Cesaitis K., Cesaitiene G., Gleiznys D., Mazeliene Z. Antimicrobial activity of silver and gold in toothpaste: A comparative analysis. Stomatologija. 2015; 17: 9-12.

Wu D., Fan W., Kishen A., Gutmann J. L., Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod. 2014; 40 (2): 285-90.

Comments

Downloads

Download data is not yet available.