http://revistas.ucr.ac.cr/index.php/agromesoAgronomía Mesoamericana ISSN electrónico: 2215-3608

Photosynthetic pigments and stomatal conductance in ecotypes of copoazu (Theobroma grandi orum Willd. Ex. Spreng K. Schum.).

Juan Carlos Suárez-Salazar, July Andrea Rojas-Castillo, Ervin Humprey Duran-Bautista, Neftali Ortiz-Cifuentes



DOI: http://dx.doi.org/10.15517/am.v28i1.20814

Abstract


The objective of this work was to evaluate the variability of photosynthetic pigment content and daily stomatal conductance was evaluated in relation to environmental variables in Copoazú (Theobroma grandi orum) ecotypes. The ecotypes used were part of the germoplasm bank of the University of the Amazon (Colombia). The study was carried out during the year 2015. Four leaves of the average stratum of four plants were collected for each ecotype, to extract and read at different levels of absorbance and determine the content of photosynthetic pigments. During the hours of 04:00 a.m. to 6:00 p.m., the stomatal conductance (gs) was monitored for environmental variables (relative humidity, air temperature, radiation and vapor pressure de cit (VPD). An analysis of variance was made using the Tukey test, correlations and regressions were made between gs and environmental variables. The contents of chlorophyll a, b, total and carotenoids among ecotypes were different (P<0.0001), the ecotype UA-31 presented the highest values, contrasting with the ecotype UA-37. Concerning gs, the interaction ecotype*hour showed significant differences (P<0.0001) .The ecotypes that presented the highest values of gs were UA-67 and UA-039, (P<0.0001), radiation (-0.91, P<0.0001) and DPV (-0.94; P<0.0001) 0.0001).The results suggest that ecotypes UA-039 and UA-31 were the most suitable in terms of gaseous exchange and content of photosynthetic pigments. 

 


Keywords


phenotypic diversity; physiological response; environmental conditions.

References


Allen, R.G., L.S, Pereira, D. Raes, y M. Smith. 2006. Evapotranspiración del cultivo: guías para determinación los requerimientos de agua de los cultivos. FAO, Roma, ITA.

Almeida, A.A., F.P. Gomes, R.P. Araujo, R.C. Santos, and R.R. Valle. 2014. Leaf gas exchange in species of the Theobroma genus. Photosynthetica 52:16-21.

Alves, R.M., A.M. Sebbenn, A.S. Artero, C. Clement, and A. Figueira. 2007. High levels of genetic divergence and inbreeding in populations of cupuassu (Theobroma grandi orum). Tree Genet. Gen. 3:289-298.

Baker, N.R. 2008. Chlorophyll uorescence: a probe of photosynthesis in vivo. Ann. Rev. Plant. Biol. 59:89-113.

Baligar, V.C., J.A. Bunce, C.R. Machado, and M.K. Elson. 2008. Photosynthetic photon ux density, carbon dioxide concentration, and vapor pressure de cit effects on photosynthesis in cacao seedlings. Photosynthetica 46:216-221.

Balasimha, D., E.V. Daniel, and P.G. Bhat. 1991. In uence of environmental factors on photosynthesis in cocoa trees. Agr. Forest Metereol. 55:15-21.

Barrera, J., N. Orjuela, L.M. Melgarejo, D. Caicedo, y M.S. Hernández. 2009. Efecto de de ciencias minerales y de la luz en arazá (Eugenia stipitata) y copoazú (Theobroma grandi orum). En: M.S. Hernández, y J. Barrera, editores, Frutas amazónicas: competitividad e innovación. Editorial Instituto Amazónico de Investiga- ciones Cientí cas Sinchi, Bogotá, COL. p. 11-34.

Bertolde, F.Z., A.A. Almeida, C.P. Pirovani, F.P. Gomes, D. Ahnert, V.C. Baligar, and R.R. Valle. 2012. Physiological and biochemical responses of Theobroma cacao L. genotypes to ooding. Photosynthetica 50:447-457.

Bobich, E.G., G.A. Barron-Gafford, K.G. Rascher, and R. Murthy. 2010. Effects of drought and changes in vapour pressure de cit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30:866-875.

Caplan, J.S., and J.A. Yeakley. 2010. Water relations advantages for invasive Rubus armeniacus over two native ruderal congeners. Plant Ecol. 210:169-179.

Daymond, A.J., and P. Hadley. 2004. The effects of temperature and light integral on early vegetative growth and chlorophyll uorescence of four contrasting genotypes of cacao (Theobroma cacao). Ann. Appl. Biol. 145:257-262.

Daymond, A.J., P.J. Tricker, and P. Hadley. 2011. Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biol. Plant. 55:99-104.

Di Rienzo, J.A., F. Casanoves, M.G. Balzarini, L. González, M. Tablada, y C.W. Robledo. 2015. Infostat versión 2015. Universidad Nacional de Córdoba, ARG.

Doheny-Adams, T., L. Hunt, P.J. Franks, D.J. Beerling, and J.E. Gray. 2012. Genetic manipulation of stomatal density in uences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos Trans. R. Soc. Lond. B Biol. Sci. 367:547-555.

Dow, G.J., and D.C. Bergmann. 2014. Patterning and processes: how stomatal development de nes physiological potential. Current Opinion Plant Biol. 21:67-74.

Easlon, H., K. Nemali, J. Richards, D. Hanson, T. Juenger, and J. McKay. 2014. The physiological basis for genetic variation in water use ef ciency and carbon isotope composition in Arabidopsis thaliana. Photosynth. Res. 119:119-129.

Fortes, D., R.S. Herrera, S. Gonzales, M. García, A. Romero, y A.M. Cruz. 2010. Comportamiento de los pigmentos fotosintéticos, según la edad de rebrote después del pastoreo de Pennisetum purpureum vc. Cuba CT- 115 en la estación lluviosa. Rev. Cub. Cienc. Agríc. 44:427-431.

García, X., E. García, Q. Rascón, L. Herrera, and G.A. Aguado. 2005. Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. J. Plant Physiol. 162:650-667.

Genovese, M.I., and S.C.D.S. Lannes. 2009. Comparison of total phenolic content and antiradical capacity of powders and “chocolates” from cocoa and cupuassu. Food Sci. Technol. (Campinas) 29:810-814.

Gilbert, M.E., N.M. Holbrook, M.A. Zwieniecki, W. Sadok, and T.R. Sinclair. 2011. Field con rmation of genetic variation in soybean transpiration response to vapor pressure de cit and photosynthetic compensation. Field Crops Res. 124:85-92.

Huang, X.D., Y.E. Alawi, D.M. Penrose, B.R. Glick, and B.M. Greenberg. 2004. Responses of three grass species to creosote during phytoremediation. Environ. Poll. 130:453-459.

Jaimez, R.E., W. Tezara, I.L. Coronel, y R. Urich. 2008. Eco siología del cacao (Theobroma cacao): su manejo en el sistema agroforestal. Sugerencias para su mejoramiento en Venezuela. Rev. Forest. Venez. 52:253-258.

Joly, R.J., and D.T. Hahn. 1989. Net CO2 assimilation of cacao seedlings during periods of plant water de cit. Photosynth. Res. 21:151-159.

Lawlor, D.W. 2001. Photosynthesis. 3th ed. BIOS Sci. Publishers, Oxford, GBR.

Lichtenthaler, H.K. 1987. Chlorophylls and crotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350-382.

Lombardozzi, D., J.P. Sparks, G. Bonan, and S. Levis. 2012. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model. Oecologia 169:651-659.

Maherali, H., M.E. Sherrard, M.H. Clifford, and R.G. Latta. 2008. Leaf hydraulic conductivity and photosynthesis are genetically correlated in an annual grass. New Phytol. 180:240-247.

Masle, J., S.R. Gilmore, and G.D. Farquhar. 2005. The ERECTA gene regulates plant transpiration ef ciency in Arabidopsis. Nature 436:866-870.

Matsumoto, K., T. Ohta, and T. Tanaka. 2005. Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. Agric. Forest Meteorol. 132:44-57.

Melgarejo, L.M., M. Romero, S. Hernández, J. Barrera, M.E. Solarte, D. Suárez, L.V. Pérez, A. Rojas, M. Cruz, A.L. Moreno, S.C. Crespo, y W.H. Pérez. 2010. Experimentos en siología vegetal. Universidad Nacional de Colombia, Bogotá, COL.

Naizaque, J., G. García, G. Fischer, y L.M. Melgarejo. 2014. Relación entre la densidad estomática, la transpiración y las condiciones ambientales en Feijoa (Acca sellowiana [o. Berg] Burret). Rev. U.D.C.A. Act. & Div. Cient. 17:115-121.

Ofori, A., F.K. Padi, K. Acheampong, and S. Lowor. 2015. Genetic variation and relationship of traits related to drought tolerance in cocoa (Theobroma cacao L.) under shade and no-shade conditions in Ghana. Euphytica 201:411-421.

Oren, R., J.S. Sperry, G.C. Katul, D.E. Pataki, B.E. Ewers, N. Phillips, and K.V.R. Schäfer. 1999. Survey and synthesis of intra and interspeci c variation in stomatal sensitivity to vapour pressure de cit. Plant Cell Environ. 22:1515-1526.

Pezeshki, S.R. 2001. Wetland plant responses to soil ooding. Environ. Exp. Bot. 46:299-312.

Sena-Gomes, A.R., T.T. Kozlowski, and P.B. Reich. 1987. Some physiological responses of Theobroma cacao var. Catongo seedlings to air humidity. New Phytol. 107:591-602.

Schützendübel, A., and A. Polle. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53:1351-1365.

Raja-Harun, R., and Hardwick, K. 1988. The effects of different temperature and water vapour pressure de cit on photosynthesis and transpiration in cocoa. In: Cocoa producers’ alliance, editor, Proceedings of the 10th International Cocoa Research Conference. Cocoa Producers’ Alliance, Lagos, NGR. p. 17-23.


Refbacks

  • There are currently no refbacks.




© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems.