Revista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

OAI: https://revistas.ucr.ac.cr/index.php/rbt/oai
Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India
PDF
HTML

Keywords

ethnomedicinal plants
endophytic and epiphytic bacteria
plant growth promotion
antagonistic
ethnomedicinal plants
endophytic and epiphytic bacteria
plant growth promotion
antagonistic

How to Cite

War Nongkhla, F. M., & Joshi, S. R. (2014). Epiphytic and endophytic bacteria that promote growth of ethnomedicinal plants in the subtropical forests of Meghalaya, India. Revista De Biología Tropical, 62(4), 1295–1308. https://doi.org/10.15517/rbt.v62i4.12138

Abstract

The present study was aimed to investigate the endophytic and epiphytic bacteria associated with selected ethnomedicinal plants from the pristine subtropical forests of Meghalaya and analyse them for plant growth promotion and antagonistic ability. This study is an attempt to explore plant associated bacteria which are beneficial to host plants, and thus aid in the conservation of ethnomedicinal plants of the studied subtropical forests, which are dwindling due to exploitation. The plant growth promotion parameters like indole acetic acid (IAA) production, mineral phosphate solubilisation, acid phosphatase activity, presence of 1-aminocyclopropane-1-carboxylic acid deaminase (ACC) gene, nitrogen fixation, cellulose digestion, chitin and pectin were screened among the isolates. The study revealed significant differences in bacterial population not only between the epiphytic and endophytic microhabitats, but also amongst the host plants. Out of the 70 isolated plant associated bacteria, Bacillus sp., Serratia sp., Pseudomonas sp., Pantoea sp., and Lysinibacillus sp. showed potent plant growth promotion properties. Bacillus siamensis C53 and B. subtilis cenB showed significant antagonistic activity against the tested pathogens. This study indicated the isolates inhabiting the plants prevalent in the subtropical sacred forests that could be explored for use as plant growth promoters while practising the cultivation and conservation of ethnomedicinal plants.

https://doi.org/10.15517/rbt.v62i4.12138
PDF
HTML

References

Backman, P. A. & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biological Control, 46, 1-3.

Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., & Mengoni, A. (2007). Isolation and characterization of endophytic bacteria from the nickel hyper accumulator plant Alyssum bertolonii. Microbial Ecology, 53, 306-316.

Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and environmental Microbiology, 57, 535-538.

Chun, J., Lee, J. H., Jung, Y., Kim, M., Kim, S., Kim, B. K., & Lim, Y. W. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57, 2259-2261.

Das, M., Royer, T. V. & Leff, L. G. (2007). Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream. Applied and Environmental Microbiology, 73, 756-767.

Ehrlich, H. L. (1990). Geomicrobiology (pp. 646). New York: Dekker.

Farnsworth, N. R., Akerele, O., Bingel, A. S., Soejarta, D. D., & Eno, Z. (1985). Medicinal plants in therapy. World Health Organ, 63, 965-981.

Glick, B. R., Penrose, D. M., & Li, J. (1998). A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. Journal of Theoretical Biology, 190, 63-68.

Gordon, S. A. & Weber, R. P. (1951). Colorimetric estimation of indole-acetic acid. Plant Physiology, 26, 192-195.

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43, 895-914.

Hallmann, J., Quadt-Hallmann, A., Rodríguez-Kábana, R., & Kloepper, J. W. (1998). Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biology & Biochemistry, 30, 925-937.

Hamayun, M., Khan, S. A., Khan, A. L., Rehman, G., Kim, Y. H., Iqbal, I., Hussain, J., Sohn, E. Y., & Lee, I. J. (2010). Gibberellins production and plant growth promotion by pure cultures of Cladosporium sp. MH-6 isolated from Cucumber (Cucumis sativus L.). Mycologia, 102, 989-995.

Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63, 3233-3241.

Hynniewta, S. R. & Kumar, Y. (2008). Herbal remedies among the Khasi traditional healers and village folks in Meghalaya. Indian Journal of Traditional Knowledge, 7, 581-586.

Jackson, M. L. (1973). Soil Chemical Analysis (pp. 38-204). New Delhi: Prentice Hall of India Pvt Ltd.

Klee, H. J., Hayford, M. B., Kretzmer, K. A., Barry, G. F., & Kishore, G. M. (1991). Control of ethylene synthesis by expression of a bacterial enzymein transgenic tomato plants. Plant Cell, 3, 1187-1193.

Kobayashi, D. Y. & Columbo, J. D. (2000). Bacterial endophytes and their effects on plants and uses in agriculture. In C. W. Bacon & J. F. White (Eds.), Microbial Endophytes (pp. 199-236). New York: Marcel Dekker.

Kuklinsky-Sobral, J., Araújo, W. L., Mendes, R., & Geraldi, I. O. (2004). Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, 6, 1244-1251.

Long, H. H., Furuya, N., Kurose, D., Takeshita, M., & Takanami, Y. (2003). Isolation of endophytic bacteria from Solanum sp. and their antibacterial activity against plant pathogenic bacteria. Journal of the Faculty of Agriculture Kyushu University, 48, 21-28.

Long, H. H., Schmidt, D. D., & Baldwin, I. T. (2008). Native Bacterial Endophytes Promote Host Growth in a Species-Specific Manner; Phytohormone Manipulations Do Not Result in Common Growth Responses. PLoS ONE, 3, e2702.

Lu, W. J., Wang, H. T., Yang, S. J., Wang, Z. C., & Nie, Y. F. (2005). Isolation and characterization of mesophilic cellulose degrading bacteria from flower stalks vegetable waste co-composting system. Journal of General and Applied Microbiology, 51, 353-360.

Lyngwi, L. A., Koijam, K., Sharma, D., & Joshi, S. R. (2013). Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Revista de Biología Tropical, 61, 467-490.

Mukherjee, P. K., Balsubramanian, R., Saha, K., Pal, M., & Saha, B. P. (1995). Antibacterial efficiency of Nelumbo nucifera (Nymphaeaceae) rhizome extract. Indian drugs, 32, 274-276.

Okon, Y., Albrecht, S. L., & Burris, R. H. (1977). Methods for growing Spirillum lipoferum and for counting it in pure culture and in association with plants. Applied and Environmental Microbiology, 33, 85-88.

Petrini, O. (1991). Fungal endophytes of tree leaves. In J. H. Andrews & S. S. Hirano (Eds.), Microbial Ecology of Leaves (pp. 179-197). New York: Springer Verlag.

Raddadi, N., Cherif, A., Boudabous, A., & Daffonchio, D. (2008). Screening of plant growth promoting traits of Bacillus thuringiensis. Annals of Microbiology, 58, 47-52.

Roberts, W. K. & Selitrennikoff, C. P. (1988). Plant and bacterial chitinases differ in antifungal activity. Journal of General Microbiology, 134, 169-176.

Rodríguez, H. & Fraga R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319-339.

Rodríguez, H., Fraga, R., Gonzalez, T., & Bashan, T. (2006). Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil, 287, 15-21.

Rutherford, R. S., Van Antwerpen, T., Conlong, D. E., Keeping, M. G., McFarlane, S. A., & Vogel, J. L. (2002). Promoting plant health: Potential for the use of plant-associated micro-organisms in the biological control of pathogens and pests in sugarcane. Proceedings of the South African Sugar Technologists' Association, 76, 289-300.

Salisbury, F. B. (1994). The role of plant hormones. In R. E. Wilkinson (Ed.), Plant-environment interactions (pp. 39-81). New York: Marcel Dekker.

Sekar, S. & Kandavel, D. (2010). Interaction of plant growth promoting rhizobacteria (pgpr) and endophytes with medicinal plants-new avenues for phytochemicals. Journal of Phytology, 2, 91-100.

Stierle, A., Strobel, G., & Stierle, D. (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew (Taxus brevifolia). Science, 260, 214-216.

Strobel, G., Daisy, B., Castillo, U., & Harper, J. (2004). Natural products from endophytic microorganisms. Journal of Natural Products, 67, 257-268.

Syiem, D., Sharma, R., & Saio, V. (2009). In vitro study of the antioxidant potential of some traditionally used medicinal plants of North-East India and assessment of their total phenolic content. Pharmacologyonline, 3, 952-965.

Tabatabai, M. A. & Bremner, J. M. (1969). Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology & Biochemistry, 1, 301-307.

Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599.

Tan, R. X. & Zou, W. X. (2001). Endophytes: a rich source of functional metabolites. Natural Product Reports, 18, 448-459.

Comments

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2014 Revista de Biología Tropical

Downloads

Download data is not yet available.