http://revistas.ucr.ac.cr/index.php/rbtRevista de Biología Tropical ISSN Impreso: 0034-7744 ISSN electrónico: 2215-2075

Phytoplankton functional groups in a tropical reservoir in the Brazilian semiarid region

Ruceline Paiva Melo Lins, Beatriz Susana Ovruski de Ceballos, Luiz Carlos Serramo Lopez, Luciana Gomes Barbosa



DOI: http://dx.doi.org/10.15517/rbt.v65i3.25529

Abstract


Phytoplankton functional groups structure and species abundance vary according to environmental conditions. The present study investigated the natural and anthropogenic stressors that affect phytoplankton functional group biomass in a Brazilian semiarid region reservoir (Argemiro de Figueiredo reservoir). Sampling occurred between August 2007 and July 2009 on a bi-monthly basis for the first year, and in a monthly basis for the last two years. There were three collection points (PC: river confluence; PNC: near the cages; PD: dam site). The water environment analysis of abiotic variables included: temperature, transparency, coefficient of vertical light attenuation, dissolved oxygen, pH, electrical conductivity, alkalinity, dissolved inorganic nitrogen, and reactive soluble phosphorus. Phytoplankton samples were collected into a Van Dorn bottle, and were then preserved in acetic lugol and were quantified using an inverted microscope to determine phytoplankton density and biomass; the identified species were assembled in functional groups. The data were explored by canonical correspondence analysis. Individual analyses were made to test the temporal and spatial variability of the data and the factors that interfered most with the biotic and abiotic variables. Functional groups S1, SN, and K, consisting of filamentous Planktothrix agardhii (Gomont) Anagnostidis & Komárek, Cylindrospermopsis raciborskii (Woloszynska) Seenaya & Subba Raju, and the coccoid Aphanocapsa incerta (Lemmermann) Cronberg & Komárek, respectively, dominated the dry months when the water was warm, turbid, and alkaline. The overflow reservoir served as a natural disturbance reducing the phytoplankton biomass to less than 50 % and the dominance of cyanobacteria, promoting the domain of functional groups F, M, MP, Lo, and X2. The nutrient inputs from intensive fish farming, associated with a low local depth (Zmax = 7.7 m) close to the cages (PNC), resulted in a significant human disturbance that increased the prevalence of functional groups S1, SN, and K, which are composed primarily of cyanobacteria. We concluded that, in reservoirs, overflow events are natural disturbances that have the ability to reduce phytoplankton biomass and alter the structure of local communities, and that intensive fish farming is an anthropogenic disturbance that increases the availability of nutrients and stimulates an increase in biomass of the functional groups that include cyanobacteria. Furthermore, the functional groups of phytoplankton were reliable control of environmental conditions in the reservoirs of tropical semiarid regions.


Keywords


phytoplankton, functional groups, climatic conditions, biomass stability, reservoir, semiarid region, natural and anthropogenic stressors.

References


APHA-American Public Health Association. (2005). Standard methods for examination of water and wastewater (20th ed). Washington, DC: APHA, AWWA & WEF.

Barbosa, J. E. L., & Mendes, J. S. (2005). Estrutura da comunidade fitoplanctônica e aspetos físicos e químicos das águas do reservatório de Acauã-semiárido paraibano. In Anais da X Reunião da Sociedade Brasileira de Ficologia (Eds.), (pp. 339-360). Rio de Janeiro: Museu Nacional.

Barone, R., & Flores, L. N. (1994). Phytoplankton dynamics in a shallow, hypertrophic reservoir (Lake Arancio, Sicily). Hydrobiologia, 289, 199-214.

Bonilla, S., Aubriot, L., Soares, M. C. S., González-Piana, M., Fabre, A., Huszar, V. L. M., & Kruk, C. (2012). What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiology Ecology, 79, 594-607.

Bouvy, M., Falcão, D., Marinho, M., Pagano, M., & Moura, A. (2000). Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquatic Microbial Ecology, 23, 13-27.

Borges, P. A. F., Train, S., Dias, J. D., & Bonecker, C. C. (2010). Effects of fish farming on plankton structure in a Brazilian tropical reservoir. Hydrobiologia, 649, 279-291.

Borges, P. A. F., Train, S., & Rodrigues, L. C. (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia, 607, 63-74.

Brasil, J., & Huszar, V. L. M. (2011). O papel dos traços funcionais na ecologia do fitoplâncton continental. Oecologia Australis, 15, 799-834.

Câmara, F. R. A., Rocha, O., Pessoa, E. K. R., Chellappa, S., & Chellappa, N. T. (2015). Morphofunctional changes of phytoplankton community during pluvial anomaly in a tropical reservoir. Brazilian Journal of Biology, 75, 628-637.

Chellappa, N. T., Chellappa, T., Câmara, F. R. A., Rocha, O., & Chellappa, S. (2009a). Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnologica, 39, 273-282.

Chellappa, N. T., Câmara, F. R., & Rocha, O. (2009). Phytoplankton community: indicator of water quality in the Armando Ribeiro Gonçalves reservoir and Pataxó channel, Rio Grande do Norte, Brazil. Brazilian Journal of Biology, 69, 241-251.

Chellappa, N. T., Chellappa, S. L., & Chellappa, S. (2008). Harmful phytoplankton blooms and fish mortality in a eutrophicated reservoir of Northeast Brazil. Brazilian Archives of Biology and Technology, 51, 833-841.

Cole, G. (1994). Textbook of limnology. Illinois: Waveland Press.

Dantas, Ê. W., Moura, A. N., & Bittencourt-Oliveira, M. do C. (2011). Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. Anais Da Academia Brasileira de Ciências, 83, 1327-1338.

Dejenie, T., Asmelash, T., De Meester, L., Mulugeta, A., Gebrekidan, A., Risch, S., … Declerck, S. (2008). Limnological and ecological characteristics of tropical highland reservoirs in Tigray, Northern Ethiopia. Hydrobiologia, 610, 193-209.

Douma, M., Ouahid, Y., Campo, F. F. Del, Loudiki, M., Mouhri, K., & Oudra, B. (2010). Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environmental Monitoring and Assessment, 160, 439-450.

Fabbro, L. D., & Duivenvoorden, L. J. (2000). A two-part model linking multidimensional environmental gradients and seasonal succession of phytoplankton assemblages. Hydrobiologia, 438, 13-24.

Figueredo, C. C., & Giani, A. (2005). Ecological interactions between nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the furnas reservoir (Brazil). Freshwater Biology, 50, 1391-1403.

Golterman, H. L., Clymo, R. S., & Ohnstad, M. A. M. (1978). Methods for Physical and Chemical Analysis of Freshwaters. Oxford, UK: IBP Handbook. Blackwell Science Publication.

Governo do Estado da Paraiba. (2007). Plano Estadual de Recursos Hídricos: Resumo Executivo e Atlas. João Pessoa: Secretaria de Estado da Ciência e Tecnologia e do Meio Ambiente - SECTA, Agência Executiva de Gestão das Águas do Estado da Paraíba - AESA.

Guo, L., Li, Z., Xie, P., & Ni, L. (2009). Assessment effects of cage culture on nitrogen and phosphorus dynamics in relation to fallowing in a shallow lake in China. Aquaculture International, 17, 229-241.

Gurbuz, H., Kivrak, E., Soyupak, S., & Yerli, S. V. (2003). Predicting dominant phytoplankton quantities in a reservoir by using neural networks. Hydrobiologia, 504, 133-141.

Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403-424.

Huszar, V. L. M., Silva, L. H. S., Marinho, M., Domingos, P., & Sant’Anna, C. L. (2000). Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia, 424, 67-77.

Karadžić, V., Subakov-Simić, G., Krizmanić, J., & Natić, D. (2010). Phytoplankton and eutrophication development in the water supply reservoirs Garaši and Bukulja (Serbia). Desalination, 255, 91-96.

Kosten, S., Huszar, V. L. M., Mazzeo, N., Scheffer, M., Sternberg, L. D. S. L., & Jeppesen, E. (2009). Lake and watershed characteristics rather than climate in shallow lakes influence nutrient limitation. Ecological Applications, 19, 1791-1804.

Kruk, C., Mazzeo, N., Lacerot, G., & Reynolds, C. S. (2002). Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research, 24, 901-912.

Kruk, C., Peeters, E. T. H. M., Van Nes, E. H., Huszar, V. L. M., Costa, L. S., & Scheffer, M. (2011). Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography, 56, 110-118.

Lazzaro, X., Bouvy, M., Ribeiro-Filho, R. A., Oliviera, V. S., Sales, L. T., Vasconcelos, A. R. M., & Mata, M. R. (2003). Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology, 48, 649-668.

Lins, R. P. M., Barbosa, L. G., Minillo, A., & De Ceballos, B. S. O. (2016). Cyanobacteria in a eutrophicated reservoir in a semi-arid region in Brazil: dominance and microcystin events of blooms. Revista Brasileira de Botânica, 39, 583-591.

Lopes, M. R. M., Ferragut, C., & Bicudo, C. E. M. (2009). Phytoplankton diversity and strategies in regard to physical disturbances in a shallow, oligotrophic, tropical reservoir in Southeast Brazil. Limnetica, 28, 159-174.

Lund, J. W. G., Kipling, G., & Le Creen, E. D. (1958). The inverted microscope method of estimating algae numbers and the statistical basis of estimation by counting. Hydrobiologia, 11, 143-170.

Mackereth, F. J. H., Heron, J., & Talling, J. F. (1978). Water analysis: some revised methods for limnologists. London: Freshwater Biological Association.

Marengo, J. A., Alves, L. M., Beserra, E. A., & Lacerda, F. F. (2011). Variabilidade e mudanças climáticas no semiárido brasileiro. In S. S. Medeiros, H. R. Gheyi, C. O. Galvão, & V. P. S. Paz (Eds.), Recursos hídricos em regiões áridas e semiáridas (pp. 384-422). Campina Grande: IJUSA-Instituto Nacional do Semiárido.

Morris, D. P., & Lewis, W. M. (1988). Phytoplankton nutrient limitation in Colorado mountain lakes. Freshwater Biology, 20, 315-327.

Naselli-Flores, L., Barone, R., Chorus, I., & Kurmayer, R. (2007). Toxic Cyanobacterial Blooms in Reservoirs Under a Semiarid Mediterranean Climate: The Magnification of a Problem. Environmental Toxicology, 22, 399-404.

Naselli-Flores, L. (2013). Morphological analysis of phytoplankton as a tool to assess ecological state of aquatic ecosystems: The case of Lake Arancio, Sicily, Italy. Inland Waters, 4, 15-26.

Oliveira, F. H. P. C., da Silva, J. D. B., Costa, A. N. S. F., Ramalho, W. P., Moreira, C. H. P., & Calazans, T. L. S. (2015). Comunidade de cianobactérias em dois reservatórios eutróficos e tropicais no nordeste do Brasil. Acta Scientiarum - Biological Sciences, 37, 169-176.

Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621, 1-19.

Panosso, R., Costa, I. A. S., Souza, N. R., de Attayde, J. L., Cunha, S. R. de S., & Gomes, F. C. F. (2007). Cianobactérias e cianotoxinas em reservatórios do estado do Rio Grande do Norte e o potencial controle das florações pela tilápia do nilo (Oreochromis niloticus). Oecologia Brasiliensis, 11, 433-449.

Poole, H. H., & Atkins, W. R. G. (1929). Photo-electric measurements of submarine illumination throughout the year. Journal of Marine Biological Association of the United Kingdom, 16, 297-324.

Poulíčková, A., Hašler, P., & Kitner, M. (2004). Annual cycle of Planktothrix agardhii (Gom.) Anagn. & Kom. nature population. International Review of Hydrobiology, 89, 278-288.

Reynolds, C. S. (1997). Vegetation Processes in the Pelagic: A model for ecosystem theory. Germany: Ecology Institute.

Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia, 369370, 11-26.

Reynolds, C. S., Elliott, A. J., & Frassl, M. A. (2014). Predictive utility of trait-separated phytoplankton groups: A robust approach to modeling population dynamics. Journal of Great Lakes Research, 40, 143-150.

Reynolds, C. S., Huszar, V., Kruk, C., Naselli, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal Plankton Research, 24, 417-428.

Reynolds, C. S., Padisak, J., & Sommer, U. (1993). Intermediate disturbance in the ecology of phytoplankton and themaintenance of species diversity: a synthesis. Hydrobiologia, 249, 183-188.

Seip, K. L., & Reynolds, C. S. (1995). Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography, 40, 589-597.

Silva, D. F., Sousa, F. A. S., Kayano, M. T., & Araujo, L. E. (2008). Climatic accompaniment of watersheds from Mundaú River, State of Alagoas and Pernambuco, and from Paraiba River, State of Paraiba, Brazil (in Portuguese). Engenharia Ambiental, 5, 79-93.

Straskraba, M., Tunidisi, J. G., & Duncan, A. (1993). State-of-art of reservoir limnology and water quality management. In M. Straskraba, J. G. Tundisi, A. Duncan (Eds.), Comparative Reservoir Limnology and Water Quality Management (pp. 213-288). Netherlands: Kluwer Academic Publishers.

Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25, 1331-1346.

Ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO Reference Manual and CanoDraw for Windows User's guide: Software for Canonical Community Ordination (version 4.5). Ithaca, New York: Microcomputer Power.

Toledo Jr, A. P., Talarico, M., Chinez S. J., & Agudo, E. G. (1983). The application of simple models for evaluating eutrophication processes in tropical lakes and reservoirs. In Annals of the 12th Brazilian Congress of Sanitary and Environmental Engineering (Eds.), (pp. 1-34). Camboriú: Brazilian Association of Sanitary and Environmental Engineering-Abes.

Török, P., T-Krasznai, E., B-Béres, V., Bácsi, I., Borics, G., & Tóthmérész, B. (2016). Functional diversity supports the biomass-diversity humped-back relationship in phytoplankton assemblages. Functional Ecology, 30, 1593-1602.

Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik.. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 9, 1-38.

Wetzel, R. G., & Likens, G. E. (2000). Limnological Analysis. New York: Springer-Verlag.

Znachor, P., Zapomělová, E., Řeháková, K., Nedoma, J., & Šimek, K. (2008). The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquatic Sciences, 70, 77-86.


Refbacks

  • There are currently no refbacks.


© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems.