Abstract
The purpose of this systematic review was to compare the efficacy and efficiency of chemical-mechanical agents (CMA) versus rotary systems (RS) for the removal of dental caries (DC) in permanent molars. The search was carried out in five electronic databases (PubMed, Ebsco, Scopus, ScienceDirect, LILACS) and gray literature, complemented with a manual search in impact journals until July 2022 in English, Spanish and Portuguese. The efficacy of DC treatment was analyzed histologically, microbiologically, radiographically, or physicochemical-mechanically and efficiency was evaluated according to the shortest time for removal. Risk of bias was assessed with the RoB tool. Nine studies were included out of 914 publications that evaluated 337 molars with split design treated with low- or high-speed RS and CMA, such as Carisolv, Papacarie, Carie Care and Brix 3000. Significant differences were found among the studies (p<0.05), with Carisolv presenting a higher amount of residual caries, the presence of bacteria in dentin and less extent or volume of extracted caries, while Papacarie showed an absence of smear in dentin tubules and RS obtained higher microhardness values and required less time for removal. There was no difference between the two methods with respect to calcium-phosphorus titration or bond strength (p≥0.05). CMAs removed DC with less invasion to sound dentin tissues compared to RS, but reduced surface hardness and required a longer removal time.
References
Rathee M., Sapra A. Dental Caries. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 June 21.
Santos T.M.L., Bresciani E., Matos F.S., Camargo S.E.A., Hidalgo A.P.T., Rivera L.M.L., Bernardino Í.M., Paranhos L.R. Comparison between conventional and chemomechanical approaches for the removal of carious dentin: an in vitro study. Sci Rep. 2020; 10 (1): 8127. doi: 10.1038/s41598-020-65159-x
Ramos-Gomez F., Kinsler J., Askaryar H. Understanding oral health disparities in children as a global public health issue: how dental health professionals can make a difference. J Public Health Policy 2020 Jun; 41 (2): 114-124. doi: 10.1057/s41271-020-00222-5
Bratu D.C., Nikolajevic-Stoican N., Popa G., Pop S.I., Dragoș B., Luca M.M. A Bibliometric analysis (2010-2020) of the dental scientific literature on chemo-mechanical methods of caries removal using Carisolv and BRIX3000. Medicina (Kaunas). 2022; 58 (6): 788. doi: 10.3390/medicina58060788
Meyfarth S., Cassano K., Warol F., de Deus Santos M., Scarparo A. A New Efficient agent for chemo-mechanical caries removal. Brazilian J Dent. 2020; 77: e1946. doi: 10.18363/bro.v77.2020.e1946
Bjørndal L., Simon S., Tomson P.L., Duncan H.F. Management of deep caries and the exposed pulp. Int Endod J. 2019; 52 (7): 949-973. doi: 10.1111/iej.13128
Souza T.F., Martins M.L., Magno M.B., Vicente-Gomila J.M., Fonseca-Gonçalves A., Maia L.C. Worldwide research trends on the use of chemical-mechanical caries removal products over the years: a critical review. Eur Arch Paediatr Dent. 2022; 23 (6):869-883. doi: 10.1007/s40368-022-00726-6.
Hamama H., Yiu C., Burrow M. Current update of chemomechanical caries removal methods. Aust Dent J. 2014; 59 (4): 446-456. doi:10.1111/adj.12214
Mithra N.H., Abhishek M. Chemomechanical Caries Removal: A Conservative and pain-free approach. Adv Res Gastroentero Hepatol. 2017; 5 (3): 555666. doi: 10.19080/ARGH.2017.05.555666
Cardoso M., Coelho A., Lima R., Amaro I., Paula A., Marto C.M., Sousa J., Spagnuolo G., Marques Ferreira M., Carrilho E. Efficacy and patient's acceptance of alternative methods for caries removal-a systematic review. J Clin Med. 2020; 9 (11): 3407. doi: 10.3390/jcm9113407
Maru V.P., Shakuntala B.S., Nagarathna C. Caries removal by chemomechanical (Carisolv™) vs. Rotary Drill: a systematic review. Open Dent J. 2015 Dec 31; 9: 462-472. doi: 10.2174/1874210601509010462
Bhattacharjee A.P., Gavarraju D.N., Sharma Y., Singh S., Sehrawat K., Tiwari R.V.C. Chemomechanical removal of caries - an invasive method as an extension for prevention: a review. Int J Med Rev. 2017; 4 (3): 66-69. doi: 10.29252/ijmr-040302
Puri A., Gaurav K., Kaur J., Sethi D., Jindal L., Jain S. Chemomechanical caries removal: an overview. IDA Lud J-le Dent 2020; 4 (2): 27-38. doi:10.21276/ledent.2021.05.02.03
Abdelaziz, E., Badran, A., Allam, G. Chemomechanical caries removal agents and their applications in pediatric dentistry. Adv. Dent. J., 2022; 4 (1): 11-18. doi: 10.21608/adjc.2021.103368.1119
Maashi M.S., Elkhodary H.M., Alamoudi N.M., Bamashmous N.O. Chemomechanical caries removal methods: a literature review. Saudi Dent J. 2023; 35 (3): 233-243. doi:10.1016/j.sdentj.2023.01.010
Mazumdar P., Choudhury S.R., Das D., Murmu L.B. Che-momechanical caries removal agents - an overview. J Indian Dent Assoc. 2019; 35 (1): 9-14.
Eftimoska M., Petroska A., Terzievski B., Rendzova V., Apostol-ska S. Comparative study of caries removal using Brix 3000 and classical mechanical method. Dent Serbian J. 2022; 69 (2): 57-65. doi: 10.2298/SGS2202057E
Thazhatheethil A., Hiremath M.C., Sarakanuru S.K., Surendranath P., Kothari N.R. Scanning electron microscopic evaluation of residual dentin surface in primary teeth after using two chemo-mechanical caries removal agents: an in vitro study. J Pediatr Dent. 2021; 7 (2): 49-57. doi: 10.14744/JPD.2021.04_35
Tufanaru C., Munn Z., Aromataris E., Campbell J., Hopp L. Chapter 3: Systematic reviews of effectiveness. In: Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis. JBI, 2020. Available from https://synthesismanual.jbi.global. doi: 10.46658/JBIMES-20-04
Alvarez D., Barmak A.B., Rossouw P.E., Michelogiannakis D. Comparison of shear bond strength of orthodontic brackets bonded to human teeth with and without fluorotic enamel: a systematic review and meta-analysis of experimental in vitro studies. Orthod Craniofac Res. 2023; 26 (2): 141-150. doi: 10.1111/ocr.12602
Vasudevan A., Santosh S.S., Selvakumar R.J., Sampath D.T., Natanasabapathy V. Dynamic navigation in guided endodontics – a systematic review. Eur Endod J. 2022; 7 (2): 81-91. doi: 10.14744/eej.2022.96168
Banerjee A., Kidd E.A., Watson T.F. In vitro evaluation of five alternative methods of carious dentine excavation. Caries Res. 2000; 34 (2): 144-150. doi: 10.1159/000016582
Yazici A.R., Atílla P., Özgünaltay G., Müftüoglu S. In vitro comparison of the efficacy of Carisolv and conventional rotary instrument in caries removal. J Oral Rehabil. 2003; 30 (12): 1177-1182. doi: 10.1111/j.1365-2842.2003.01627.x
Meller C., Nourallah A.W., Heyduck C., Steffen H., Splieth C.H. Chemo-mechanical dentine caries removal with Carisolv using a rotating brush. Eur J Paediatr Dent. 2006; 7 (2): 73-76.
Avinash A., Grover S.D., Koul M., Nayak M.T., Singhvi A., Singh R.K. Comparison of mechanical and chemomechanical methods of caries removal in deciduous and permanent teeth: A SEM study. J Indian Soc Pedod Prev Dent. 2012; 30 (2): 115-121. doi: 10.4103/0970-4388.99982
Hamama H.H., Yiu C.K., Burrow M.F., King N.M. Chemical, morphological, and microhardness changes of dentine after chemomechanical caries removal. Aust Dent J. 2013; 58 (3): 283-292. doi: 10.1111/adj.12093
Katirci G., Ermis R.B. Microindentation hardness and calcium/phosphorus ratio of dentin following excavation of dental caries lesions with different techniques. Springerplus. 2016; 5 (1): 1641. doi: 10.1186/s40064-016-3289-8
Nair S., Nadig R.R., Pai V.S., Gowda Y. Effect of a Papain-based chemomechanical agent on the structure of dentin and bond strength: an in vitro Study. Int J Clin Pediatr Dent 2018; 11 (3): 161-166. doi: 10.5005/jp-journals-10005-1504
Thomas A.R., Nagraj S.K., Mani R., Haribabu R. Comparative evaluation of the efficiency of caries removal using various minimally invasive techniques with conventional rotary instruments using cone beam computed tomography: An in vitro study. J Int Oral Heal. 2020; 12 (3): 253-259. doi: 10.4103/JIOH.JIOH_256_19
Cederlund A., Lindskog S., Blomlöf J. Efficacy of Carisolv-assisted caries excavation. Int J Periodontics Restorative Dent. 1999; 19 (5): 464-469. doi: 10.11607/prd.00.0337
Borompiyasawat P., Putraphan B., Luangworakhun S., Sukarawan W., Techatharatip O. Chlorhexidine gluconate enhances the remineralization effect of high viscosity glass ionomer cement on dentin carious lesions in vitro. BMC Oral Health. 2022; 22 (1): 60-61. doi: 10.1186/s12903-022-02098-1
Li Y., Liu M., Xue M., Kang Y., Liu D., Wen Y., et al. Engineered biomaterials trigger remineralization and antimicrobial effects for dental caries restoration. Molecules. 2023; 28 (17): 6373. doi: 10.3390/molecules28176373
Jara-Porroa J.J., De la Cruz-Sedano G.S., Ventura-Flores A.K., Perona-Miguel de Priego G.A. Herramientas actuales para el diagnóstico, manejo y control de la caries dental. parte II. Una revisión de la literatura. Rev Cient Odontol (Lima). 2020; 8 (1): e007. doi: 10.21142/2523-2754-0801-2020-007
Warreth A. Dental caries and its management. Int J Dent. 2023; 2023: 9365845. doi: 10.1155/2023/9365845
Tang K., Wang F., Dai S.Q., Yang Z.Y., Duan L.Y., Luo M.L., et al. Enhanced bonding to caries-affected dentin using an isocyanate-based primer. J Dent Res. 2023; 102 (13): 1444-1451. doi: 10.1177/00220345231199416
Ramamoorthi S., Nivedhitha M.S., Vanajassun P.P. Effect of two different chemomechanical caries removal agents on dentin microhardness: an in vitro study. J Conserv Dent. 2013; 16: 429-33. doi: 10.4103/0972-0707.117520
Nakajima M., Kunawarote S., Prasansuttiporn T., Tagami J. Bonding to caries-affected dentin. Jpn Dent Sci Rev. 2011; 47 (2): 102-114. doi: 10.1016/j.jdsr.2011.03.002
Dorri M., Martinez-Zapata M.J., Walsh T., Marinho V.C., Sheiham Deceased A., Zaror C. Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries. Cochrane Database Syst Rev. 2017; 12 (12): CD008072. doi: 10.1002/14651858.CD008072.pub2