Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Immunohistochemical and Clinicopathologic Correlation of DNA Methyltransferase 3A and (C-X-C motif) Ligand 1 in Oral Squamous Cell Carcinoma
PDF
HTML
EPUB

Keywords

Oral squamous cell carcinoma; DNA methyltransferase 3A; CXCL1; Immunohistochemistry; Tumor grading; Clinical characteristics.
Carcinoma oral de células escamosas; ADN metiltransferasa 3A; CXCL1; Inmunohistoquímica; Clasificación de tumores; Características clínicas.

How to Cite

Ahmed, B. A., & Mohamed, M. H. (2024). Immunohistochemical and Clinicopathologic Correlation of DNA Methyltransferase 3A and (C-X-C motif) Ligand 1 in Oral Squamous Cell Carcinoma. Odovtos - International Journal of Dental Sciences, 288–298. https://doi.org/10.15517/ijds.2024.60003

Abstract

DNA methyl transferase 3A (DNMT3A) is an enzyme acting by adding a new methyl group to DNA favoring DNA silencing and carcinogenesis. Cytokines were said to assist epigenetic switch and enhance the activation of methyltransferases in many cancer types. The role of chemokine (C-X-C motif) ligand 1 (CXCL1) in cancer development was proved in many reports. In this study, we suggested that CXCL1 might induce activation of  DNMT3A, affecting carcinogenesis of oral squamous cell carcinoma (OSCC). Immunohistochemical (IHC) scoring was calculated and statistical correlation was performed to evaluate the expression of epithelial DNMT3A in addition to epithelial and mesenchymal CXCL1 in OSCC and normal mucosal samples. DNMT3A, epithelial, and mesenchymal CXCL1 revealed a statistically significant increase in immune scoring from normal mucosa and between different tumor grades, besides a significant relation of the expressions with tumor size, stage, and lymph node involvement. Pearson’s correlation detected a statistically significant correlation of DNMT3A with epithelial and mesenchymal CXCL1. Thus, CXCL1 overexpression may be associated with DNMT3A upregulation.  DNMT3A, epithelial, and mesenchymal CXCL1 were associated with histological grades and advanced tumor characters suggesting them as reliable prognostic biomarkers in patients of OSCC.

https://doi.org/10.15517/ijds.2024.60003
PDF
HTML
EPUB

References

Hema K.N., Smitha T., Sheethal H.S., Mirnalini S.A. Epigenetics in oral squamous cell carcinoma. JOMFP. 2017; 21 (2): 252. https://doi.org/10.4103/jomfp.jomfp_150_17

Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Wei X. Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2019; 4 (1): 1-39. https://doi.org/10.1038/s41392-019-0095-0

Bollati V., Baccarelli A. Environmental epigenetics. Heredity. 2010; 105 (1): 105-12. https://doi.org/10.1038/hdy.2010.2

Smith Z.D., Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013; 14 (3): 204-20. https://doi.org/10.1038/nrg3354

Gacem R.B., Hachana M., Ziadi S., Abdelkarim S.B., Hidar S., Trimeche M. Clinicopathologic significance of DNA methyltransferase 1, 3a, and 3b overexpression in Tunisian breast cancers. Hum Pathol. 2012; 43 (10): 1731- 8. https://doi.org/10.1016/j.humpath.2011.12.022

Leonard S., Pereira M., Fox R., Gordon N., Yap J., Kehoe S., Luesley D., Woodman C., Ganesan R. Over-expression of DNMT3A predicts the risk of recurrent vulvar squamous cell carcinomas. Gynecol Oncol. 2016; 143 (2): 414-20. https://doi.org/10.1016/j.ygyno.2016.09.001

Daniel F.I., Rivero E.R., Modolo F., Lopes T.G., Salum F.G. Immunohistochemical expression of DNA methyltransferases 1, 3a and 3b in oral leukoplakias and squamous cell carcinomas. Arch Oral Biol. 2010; 55 (12): 1024-30. https://doi.org/10.1016/j.archoralbio.2010.08.009

Adhikari B.R., Uehara O., Matsuoka H., Takai R., Harada F., Utsunomiya M., Chujo T., Morikawa T., Shakya M., Yoshida K., Sato J. Immunohistochemical evaluation of Klotho and DNA methyltransferase 3a in oral squamous cell carcinomas. Med Mol Morphol. 2017; 50: 155-60. https://doi.org/10.1007/s00795-017-0156-9

Liu C.Y., Xu J.Y., Shi X.Y., Huang W., Ruan T.Y., Xie P., Ding J.L. M2-polarized tumor-associated macrophages promoted epithelial–mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest. 2013; 93 (7): 844-54. https://doi.org/10.1038/labinvest.2013.69

Li W., Zhang X., Wang J., Li M., Cao C., Tan J., Ma D., Gao Q. TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget. 2017; 8 (56): 96035. https://doi.org/10.18632/oncotarget.21635

Tuong Z.K., Lewandowski A., Bridge J.A., Cruz J.L., Yamada M., Lambie D., Lewandowski R., Steptoe R.J., Leggatt G.R., Simpson F., Frazer I.H. Cytokine/chemokine profiles in squamous cell carcinoma correlate with precancerous and cancerous disease stage. Sci Rep. 2019; 9 (1): 17754. https://doi.org/10.1038/s41598-019-54435-0

Koontongkaew S., Amornphimoltham P., Yapong B. Tumor-stroma interactions influence cytokine expression and matrix metalloproteinase activities in paired primary and metastatic head and neck cancer cells. Cell Biol Int. 2009; 33 (2): 165-73. https://doi.org/10.1016/j.cellbi.2008.10.009

Peltanova B., Raudenska M., Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer. 2019; 18 (1): 1-24. https://doi.org/10.1186/s12943-019-0983-5

Kasashima H., Yashiro M., Nakamae H., Kitayama K., Masuda G., Kinoshita H., Fukuoka T., Hasegawa T., Nakane T., Hino M., Hirakawa K. CXCL1-Chemokine (CXC Motif) Receptor 2 Signaling Stimulates the Recruitment of Bone Marrow–Derived Mesenchymal Cells into Diffuse-Type Gastric Cancer Stroma. Am J Pathol. 2016; 186 (11): 3028 -39. https://doi.org/10.1016/j.ajpath.2016.07.024

Wan X., Hong Z., Mao Y., Di W. Correlations of AKIP1, CXCL1 and CXCL2 expressions with clinicopathological features and survival profiles in cervical cancer patients. Transl Cancer Res. 2020; 9 (2): 726-34. https://doi.org/10.21037/tcr.2019.11.47

Yu S., Yi M., Xu L., Qin S., Li A., Wu K. CXCL1 as an unfavorable prognosis factor negatively regulated by DACH1 in non-small cell lung cancer. Front Oncol. 2020; 9: 1515. https://doi.org/10.3389/fonc.2019.01515

e Rolle A.F., Chiu T.K., Fara M., Shia J., Zeng Z., Weiser M.R., Paty P.B., Chiu V.K. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Transl Med. 2015; 13 (1): 1-2. https://doi.org/10.1186/s12967-015-0555-4

Wei L.Y., Lee J.J., Yeh C.Y., Yang C.J., Kok S.H., Ko J.Y., Tsai FC, Chia JS. Reciprocal activation of cancer-associated fibroblasts and oral squamous carcinoma cells through CXCL1. Oral Oncol. 2019; 88:115-23. https://doi.org/10.1016/j.oraloncology.2018.11.002

Wei Z.W., Xia G.K., Wu Y., Chen W., Xiang Z., Schwarz R.E., Brekken R.A., Awasthi N., He Y.L., Zhang C.H. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015; 359 (2): 335-43. https://doi.org/10.1016/j.canlet.2015.01.033

Wang D., Sun H., Wei J., Cen B., DuBois R.N. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017; 77 (13): 3655-65. https://doi.org/10.1158/0008-5472.can-16-3199

Lee C.H., Syu S.H., Liu K.J., Chu P.Y., Yang W.C., Lin P., Shieh W.Y. Interleukin-1 beta transactivates epidermal growth factor receptor via the CXCL1-CXCR2 axis in oral cancer. Oncotarget. 2015; 6 (36): 38866. https://doi.org/10.18632/oncotarget.5640

Tiwari N., Tiwari V.K., Waldmeier L., Balwierz P.J., Arnold P., Pachkov M., Meyer-Schaller N., Schübeler D., van Nimwegen E., Christofori G. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013; 23 (6): 768-83. https://doi.org/10.1016/j.ccr.2013.04.020

Cardenas H., Vieth E., Lee J., Segar M., Liu Y., Nephew K.P., Matei D. TGF-beta induces global changes in DNA methylation during the epithelial-to-mesenchymal transition in ovarian cancer cells. Epigenetics. 2014; 9 (11): 1461-72. https://doi.org/10.4161/15592294.2014.971608

Klymenko Y., Nephew K.P. Epigenetic crosstalk between the tumor microenvironment and ovarian cancer cells: a therapeutic road less traveled. Cancers. 2018; 10 (9): 295. https://doi.org/10.3390/cancers10090295

Almangush A., Mäkitie A.A., Triantafyllou A., de Bree R., Strojan P., Rinaldo A., Hernandez-Prera J.C., Suárez C., Kowalski L.P., Ferlito A., Leivo I. Staging and grading of oral squamous cell carcinoma: An update. Oral Oncol. 2020; 107: 104799. https://doi.org/10.1016/j.oraloncology.2020.104799

Thike A.A., Chng M.J., Tan P.H., Fook-Chong S. Immunohistochemical expression of hormone receptors in invasive breast carcinoma: correlation of results of H-score with pathological parameters. Pathology. 2001; 33 (1): 21-5. https://pubmed.ncbi.nlm.nih.gov/11280603/

Park S., Kim J., Jang W., Kim K.M., Jang K.T. Clinicopathologic significance of the delta-like ligand 4, vascular endothelial growth factor, and hypoxia-inducible factor-2α in gallbladder cancer. J Pathol Transl Med. 2023; 57 (2): 113-22. https://doi.org/10.4132/jptm.2023.02.01

Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018; 19 (2): 81-92. https://doi.org/10.1038/nrg.2017.80

Miyake M., Hori S., Morizawa Y., Tatsumi Y., Nakai Y., Anai S., Torimoto K., Aoki K., Tanaka N., Shimada K., Konishi N. CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia. 2016; 18 (10): 636-46. https://doi.org/10.1016/j.neo.2016.08.002

Daniel F.I., Alves S.R., Vieira D.S., Biz M.T., Daniel I.W., Modolo F. Immunohistochemical expression of DNA methyltransferases 1, 3a, and 3b in actinic cheilitis and lip squamous cell carcinomas. J Oral Pathol Med. 2016; 45 (10): 774-9. https://doi.org/10.1111/jop.12453

Choi M.S., Shim Y.H., Hwa J.Y., Lee S.K., Ro J.Y., Kim J.S., Yu E. Expression of DNA methyltransferases in multistep hepatocarcinogenesis. Hum Pathol. 2003; 34 (1): 11-7. https://doi.org/10.1053/hupa.2003.5

Lees-Murdock D.J., Shovlin T.C., Gardiner T., De Felici M., Walsh C.P. DNA methyltransferase expression in the mouse germ line during periods of de novo methylation. Dev Dyn: an official publication of the American Association of Anatomists. 2005; 232 (4): 992-1002. https://doi.org/10.1002/dvdy.20288

Yang J., Wei X., Wu Q., Xu Z., Gu D., Jin Y., Shen Y., Huang H., Fan H., Chen J. Clinical significance of the expression of DNA methyltransferase proteins in gastric cancer. Mol Med Rep. 2011; 4 (6): 1139-43. https://doi.org/10.3892/mmr.2011.578

Miyake M., Lawton A., Goodison S., Urquidi V., Gomes-Giacoia E., Zhang G., Ross S., Kim J., Rosser C.J. Chemokine (CXC) ligand 1 (CXCL1) protein expression is increased in aggressive bladder cancers. BMC Cancer. 2013; 13 (1): 1-7. https://doi.org/10.1186/1471-2407-13-322

Yuan M., Zhu H., Xu J., Zheng Y., Cao X., Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J Immunol Res. 2016; 2016: 6530410. https://doi.org/10.1155/2016/6530410

Chen X., Jin R., Chen R., Huang Z. Complementary action of CXCL1 and CXCL8 in pathogenesis of gastric carcinoma. Int J Clin Exp Pathol. 2018; 11 (2): 1036-45. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6958037/

Wang N., Liu W., Zheng Y., Wang S., Yang B., Li M., Song J., Zhang F., Zhang X., Wang Q., Wang Z. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis. 2018; 9 (9): 1-18. https://doi.org/10.1038/s41419-018-0876-3

Rokavec M., Öner M., Hermeking H. Inflammation-induced epigenetic switches in cancer. Cell Mol Life Sci. 2016; 73 (1): 23-39. https://doi.org/10.1007/s00018-015-2045-5

Martin M., Ancey P.B., Cros M.P., Durand G., Le Calvez-Kelm F., Hernandez-Vargas H., Herceg Z. Dynamic imbalance between cancer cell subpopulations induced by transforming growth factor beta (TGF-beta) is associated with a DNA methylome switch. BMC Genomics. 2014; 15: 435. https://doi.org/10.1186/1471-2164-15-435

Mathot P., Grandin M., Devailly G., Souazé F., Cahais V., Moran S., Campone M., Herceg Z., Esteller M., Juin P., Mehlen P., Dante R. DNA methylation signal has a major role in the response of human breast cancer cells to the microenvironment. Oncogenesis. 2017; 6 (10): e390-e390. https://doi.org/10.1038/oncsis.2017.88

Comments

Copyright (c) 2024 CC-BY-NC-SA 4.0

Downloads

Download data is not yet available.