Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Cellular Response of Surface Functionalized Polymeric Fiber Mesh Coating Onto Dental Titanium Implants
PDF
HTML
EPUB

Keywords

Nanofibers; Osteoblasts; Cell response; Titanium dental implant; Surface; Poly (lactic acid).
Nanofibras; Osteoblastos; Respuesta celular; Implantes dentales de titanio; Superficie; Ácido poliláctico.

How to Cite

Vázquez-Vázquez, F. C., Arenas-Alatorre, J., Chavarría-Bolaños, D., Pozos-Guillén, A., Alvárez-Pérez, M. A., & Ortiz-Magdaleno, M. (2024). Cellular Response of Surface Functionalized Polymeric Fiber Mesh Coating Onto Dental Titanium Implants. Odovtos - International Journal of Dental Sciences, 270–280. https://doi.org/10.15517/ijds.2024.61225

Abstract

The purpose of this in vitro study was to develop a polymeric nanofiber mesh coating for titanium implant surfaces and assess its contribution to the cellular response. Two types of dental implants TiUltraTM and TiUniteTM (Nobel Biocare) were coated with poly (lactic acid) nanofibers fabricated using the air-jet spinning technique (AJS). The morphology of the polymeric nanofibers was characterized by scanning electron micros­copy (SEM), and the biocompatibility was evaluated in terms of cell adhesion by using human fetal osteoblasts (hFOB). The cellular localization was observed under a fluorescent microscope, and the gene expression of Col 1, ALP, and OCN was evaluated by RT-PCR. The micrographs showed that the polymeric nanofiber coated the titaium (Ti) dental implant surfaces with a randomized deposition anchored between the depth of the threads, and well-interconnected pores were observed. Cell adhesion increased significantly (P<.05) more on the surfaces of Ti dental implants coated with the polymeric nanofiber mesh than on those not coated. After 21 days, the cell adhesion decreased significatively on the uncoated surfaces (P<.05). Col 1 and ALP genes showed a higher level of expression on dental implant surfaces coated with polymeric nanofibers mesh than on uncoated surfaces. Coating Ti dental implant surfaces with polymeric nanofiber mesh is a straightforward deposition technique for stimulating the cell response and improving the gene expression of osteogenic markers.

https://doi.org/10.15517/ijds.2024.61225
PDF
HTML
EPUB

References

Lavenus S., Louarn G., Layrolle P. Nanotechnology and dental implants. Int J Biomater. 2010; 2010: 915327.

Smeets R., Stadlinger B., Schwarz F., Beck-Broichsitter B., Jung O., Precht C., Kloss F., Gröbe A., Heiland M., Ebker T. Impact of dental implant surface modifications on osseointegration. Biomed Res Int. 2016; 2016: 6285620.

Xiao-Di Sun, Ting-Ting Liu, Qiang-Qiang Wang, Jian Zhang, and Mao-Sheng Cao ACS Biomaterials Science & Engineering 2023 9 (8), 4442-4461.

Raikar S., Talukdar P., Kumari S., Panda S.K., Oommen V.M., Prasad A. Factors affecting the survival rate of dental implants: A retrospective study. J Int Soc Prev Community Dent. 2017; 7 (6): 351-355.

Javed F., Ahmed H.B., Crespi R., Romanos G.E. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci. 2013; 5 (4): 162-167.

Raphel J., Karlsson J., Galli S., Wennerberg A., Lindsay C., Haugh M.G., et al. Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants. Biomaterials. 2016; 83: 269-282.

Kang B.S., Sul Y.T., Oh S.J., Lee H.J., Albrektsson T. XPS, AES and SEM analysis of recent dental implants. Acta Biomater. 2009; 5 (6): 2222-2229.

Milleret V., Lienemann P.S., Gasser A., Bauer S., Ehrbar M., Wennerberg A. Rational design and in vitro characterization of novel dental implant and abutment surfaces for balancing clinical and biological needs. Clin Implant Dent Relat Res. 2019; 21 Suppl 1: 15-24.

Brett P.M., Harle J., Salih V., Mihoc R., Olsen I., Jones F.H., et al. Roughness response genes in osteoblasts. Bone. 2004; 35 (1): 124-133.

Zeng J., Xu X., Chen X., Liang Q., Bian X., Yang L., et al. Biodegradable electrospun fibers for drug delivery. J Control Release. 2003; 92 (3): 227-231

Taepaiboon P., Rungsardthong U., Supaphol P. Drug-loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs. Nanotechnology. 2006; 17 (9): 2317-2329.

Veronesi F., Giavaresi G., Fini M., Longo G., Ioannidu C.A., Scotto d'Abusco A., et al. Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon. Mater Sci Eng C Mater Biol Appl. 2017; 70: 264-271.

Vazquez-Vazquez F.C., Chavarria-Bolaños D., Ortiz-Magdaleno M., Guarino V., Alvarez-Perez M.A. 3D-Printed tubular scaffolds decorated with air-jet-spun fibers for bone tissue applications. Bioengineering (Basel). 2022; 9 (5): 189.

Nhlapo N., Dzogbewu T.C., de Smidt O. Nanofiber polymers for coating titanium-based biomedical implants. Fibers. 2022; 10 (4): 36.

Dahlin R.L., Kasper F.K., Mikos A.G. Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev. 2011; 17 (5): 349-364.

Song R., Murphy M., Li C., Ting K., Soo C., Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther. 2018; 12: 3117-3145.

Ferro A., De Araújo Nobre M. All-on-4 concept using TiUltra surface implants and Multi-unit Xeal abutments: Pilot study report. Clin Oral Implant Research. 2021; 32 (S22): 59.

Maló P., de Araújo Nobre M., Gonçalves Y., Lopes A., Fierro A. Immediate function of anodically oxidized surface dental mplants (TiUnite™) for fixed prosthetic rehabilitation: Retrospective study with 10 years of follow-Up. Biomed Res Int. 2016; 2016: 2061237.

Fabbri G., Ban G. Clinical study with gradually anodized implants restored with two-piece anodized abutments-1-year results. Clin Oral Implants Res. 2020; 31 (520): 285-285.

Van den Borre C.E., Zigterman B.G.R., Mommaerts M.Y., Braem A. How surface coatings on titanium implants affect keratinized tissue: A systematic review. J Biomed Mater Res B Appl Biomater. 2022; 110 (7): 1713-1723.

Ye K., Liu D., Kuang H., Cai J., Chen W., Sun B. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci. 2019; 534: 625-636.

Li W.J., Laurencin C.T., Caterson E.J., Tuan R.S., Ko F.K. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002; 60 (4): 613-621.

Wang D., Christensen K., Chawla K., Xiao G.Z., Krebsbach P.H., Franceschi R.T. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation mineralization potential. J Bone Miner Res. 1999; 14 (6): 893-903.

Chen V.J., Smith L.A., Ma P.X. Bone regeneration on computer-designed nanofibrous scaffolds. Biomaterials. 2006; 27 (21): 3973-3979.

Datta P., Ghosh P., Ghosh K., Maity P., Samanta S.K., Ghosh S.K., et al. In vitro ALP and osteocalcin gene expression analysis and in vivo biocompatibility of N-methylene phosphonic chitosan nanofibers for bone regeneration. J Biomed Nanotechnol. 2013; 9 (5): 870-879.

Comments

Copyright (c) 2024 CC-BY-NC-SA 4.0

Downloads

Download data is not yet available.