Odovtos - International Journal of Dental Sciences ISSN Impreso: 1659-1046 ISSN electrónico: 2215-3411

OAI: https://revistas.ucr.ac.cr/index.php/Odontos/oai
Influence of the Cavity-Depth/light Tip-Material Distance on the Degree of Conversion and Physical Properties of a Nanohybrid Resin Composite Employing the Incremental Technique
PDF
HTML
EPUB

Keywords

Cavity depth; Nanohybrid composites; Degree of conversion; FTIR; Microhardness; Biaxial flexural strength; Physical properties; Photopolymerization distance.
Profundidad cavitaria; Resinas compuestas nanohíbridas; Grado de conversión; FTIR, Microdureza; Resistencia a flexión biaxial; Propiedades fisicas; Distancia de fotopolimerización.

How to Cite

Roque Trujillo, J. F. ., & Murillo-Gómez, F. (2025). Influence of the Cavity-Depth/light Tip-Material Distance on the Degree of Conversion and Physical Properties of a Nanohybrid Resin Composite Employing the Incremental Technique. Odovtos - International Journal of Dental Sciences, 99–113. https://doi.org/10.15517/ijds.2025.64491

Abstract

Evaluate the influence of different cavity depth and consequent light-tip/material distance, on the degree of conversion, biaxial flexural strength and microhardness of a nanohybrid resin-composite (top/bottom), employing the incremental technique. Quadrangular samples (4x4mm) with thickness variations (cavity-depth simulation: 2, 4, and 6 mm; n=10) were made using a nanohybrid resin-composite (Forma, A3, Ultradent) employing the incremental technique. Vickers Microhardness and degree of conversion were assessed on top/bottom surfaces. Biaxial flexural strength was tested on resin-composite discs (8.5mm diameter, 2mm thick) using 3D-printed molds (vertically stacked). Microhardness and Degree of conversion data were analyzed employing 2-way/ANOVA, Biaxial flexural strength with 1-way/ANOVA.For microhardness, “distance” factor plus “surface/distance” interaction resulted statistically significant (p<0.05). The 2 mm group, followed by the 4 mm group, showed the highest results (99.41±52.23 and 84.1±15.74 VHN), while the 6 mm group had the lowest (68.60±18.69 VHN), with lower values observed on the bottom surfaces for the latter group only. Biaxial flexural strength data showed no significant differences among groups. Degree of conversion was significantly higher at the top surfaces compared to the bottom surfaces (top: 47.74±9.67%; bottom: 21.93±8.57%). At 2 and 4 mm distance, polymerization quality remained adequate (top/bottom surfaces). A 6 mm distance produced lower quality polymerization, mainly on the bottom surfaces. In such scenario, an additional photopolymerization cycle may be desirable. The current outcomes may be related only to the conditions (RBC, distances and LCU) employed in this study.

https://doi.org/10.15517/ijds.2025.64491
PDF
HTML
EPUB

References

Mulligan S., Hatton P.V., Martin N. Resin-based composite materials: elution and pollution. Br Dent J. 2022; 232 (9): 644-52.

Bellinaso M.D., Soares F.Z.M., Rocha R. de O. Do bulk-fill resins decrease the restorative time in posterior teeth? A systematic review and meta-analysis of in vitro studies. J Investig Clin Dent. 2019; 10 (4).

Illie N., Hickel R. Resin composite restorative materials: Composites. Aust Dent J. 2011; 56 (Suppl 1): 59-66.

Zhou X., Huang X., Li M., Peng X., Wang S., Zhou X., et al. Development and status of resin composite as dental restorative materials. J Appl Polym Sci. 2019; 136 (44).

Stein P.S., Sullivan J., Haubenreich J.E., Osborne P.B. Composite resin in medicine and dentistry. J Long Term Eff Med Implants. 2005; 15 (6): 641-54.

Zimmerli B., Strub M., Jeger F., Stadler O., Lussi A. Composite materials: composition, properties and clinical applications. A literature review. Schweiz Monatsschr Zahnmed. 2010; 120 (11): 972-86.

Aminoroaya A., Esmaeely Neisiany R., Nouri Khorasani S., Panahi P., Das O., Ramakrishna S. A review of dental composites: Methods of characterizations. ACS Biomater Sci Eng. 2020; 6 (7): 3713-34.

Shinkai K., Taira Y., Suzuki S., Kawashima S., Suzuki M. Effect of filler size and filler loading on wear of experimental flowable resin composites. J Appl Oral Sci. 2018; 26 (0).

Rebholz-Zaribaf N., Özcan M. Adhesion to zirconia as a function of primers/silane coupling agents, luting cement types, aging and test methods. J Adhes Sci Technol. 2017; 31 (13): 1408-21.

Ferracane J.L. Resin composite-State of the Art. Dent Mater. 2011; 27 (1): 29-38.

Randolph L.D., Palin W.M., Leloup G., Leprince J.G. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties. Dent Mater. 2016; 32 (12): 1586-99.

Bompolaki D., Lubisich E.B., Fugolin A.P. Resin-based composites for direct and indirect restorations. Dent Clin North Am. 2022; 66 (4): 517-36.

Price R.B.T. Light curing in dentistry. Dent Clin North Am. 2017; 61 (4): 751-78.

Fugolin A.P.P., Pfeifer C.S. New resins for dental composites. J Dent Res. 2017; 96 (10): 1085-91.

Al-Zain A.O., Eckert G.J., Platt J.A. The influence of distance on radiant exposure and degree of conversion using different light-emitting-diode curing units. Oper Dent. 2019; 44 (3): E133-44.

Rueggeberg F.A. State-of-the-art: Dental photocuring-A review. Dent Mater. 2011; 27 (1): 39-52.

Strazzi-Sahyon H., Rocha E., Assunção W., dos Santos P. Influence of light-curing intensity on color stability and microhardness of composite resins. Int J Periodontics Restor Dent. 2020; 40 (1): 129-34.

Alkhudhairy F. Wear resistance of bulkfill composite resin restorative materials polymerized under different curing intensities. J Contemp Dent Pract. 2017;18: 39-43.

Felix C.A., Price R.B.T. The effect of distance from light source on light intensity from curing lights. J Adhes Dent. 2003; 5 (4): 283-91.

Durner J., Obermaier J., Draenert M., Ilie N. Correlation of the degree of conversion with the amount of elutable substances in nano-hybrid dental composites. Dent Mater. 2012; 28 (11): 1146-53.

AlShaafi M.M. Factors affecting polymerization of resin-based composites: A literature review. Saudi Dent J. 2017; 29 (2): 48-58.

Ferracane J.L., Hilton T.J., Stansbury J.W., Watts D.C., Silikas N., Ilie N., et al. Academy of Dental Materials guidance—Resin composites: Part II—Technique sensitivity (handling, polymerization, dimensional changes). Dent Mater. 2017; 33 (11): 1171-91.

Abidin T., Dennis D., Siagian J.S., Ikhsan T. Effect of different LED light-curing units on degree of conversion and microhardness of bulk-fill composite resin. J Contemp Dent Pract. 2020; 21 (6): 615-20.

Eshmawi Y.T., Al-Zain A.O., Eckert G.J., Platt J.A. Variation in composite degree of conversion and microflexural strength for different curing lights and surface locations. J Am Dent Assoc. 2018; 149 (10): 893-902.

Price R.B.T., Labrie D., Whalen J.M., Felix C.M. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J Can Dent Assoc. 2011; 77: b9.

Shortall A.C., Price R.B.T., MacKenzie L., Burke F.J.T. Guidelines for the selection, use, and maintenance of LED light-curing units – Part II. Br Dent J. 2016; 221 (9): 551-4.

Catelan A., de Araújo L.S.N., da Silveira B.C.M., Kawano Y., Ambrosano G.M.B., Marchi G.M., et al. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol Scand. 2015; 73 (4): 298-301.

Oh S., Kim H.J., Kim H.J., Antonson S.A., Kim S.Y. Influence of irradiation distance on the mechanical performances of resin composites polymerized with high-irradiance light curing units. Biomater Res. 2022; 26 (1).

Gonçalves L., Amaral C.M., Poskus L.T., Guimarães J.G.A., Silva E.M. Degradation of resin composites in a simulated deep cavity. Braz Dent J. 2014; 25 (6): 532-7.

Faria-e-Silva A.L., Fanger C., Nguyen L., Howerton D., Pfeifer C.S. Impact of material shade and distance from light curing unit tip on the depth of polymerization of composites. Braz Dent J. 2017; 28 (5): 632-7.

International Organization for Standardization. Dentistry-Polymer based restorative materials, International standard ISO 4049; 5th Edition 2019-05.

International Standard ISO. Metallic materials-Vicker's hardness test-Part 1: test method (ISO 6507-1: 2018).

Staudacher M., Lube T., Supancic P. The Ball-on-Three-Balls strength test for discs and plates: Extending and simplifying stress evaluation. J Eur Ceram Soc. 2023; 43 (2): 648-60.

McNaught A., Wilkinson A. IUPAC compendium of chemical terminology. Int Union Pure Appl Chem. 1997; 19: 458-65.

de Mendonça B.C., Soto-Montero J.R., de Castro E.F., Pecorari V.G.A., Rueggeberg F.A., Giannini M. Flexural strength and microhardness of bulk-fill restorative materials. J Esthet Restor Dent. 2021; 33 (4): 628-35.

El-Askary F.S., Botros S.A., Nassif M.S.A., Özcan M. Flexural strength of nano-hybrid resin composite as a function of light attenuation distance and specimen dimension. J Adhes Sci Technol. 2017; 31 (5): 520-9.

Musanje L., Darvell B.W. Polymerization of resin composite restorative materials: exposure reciprocity. Dent Mater. 2003; 19 (6): 531-41.

Lima R.B.W., Murillo-Gómez F., Sartori C.G., De Góes M.F. Effect of light absence or attenuation on biaxial flexural strength of dual-polymerized resin cements after short-and long-term storage. J Esthet Restor Dent. 2019; 31 (1): 80-7.

Jandt K.D., Mills R.W. A brief history of LED photopolymerization. Dent Mater. 2013; 29 (6): 605-17.

Al-Zain A.O., Marghalani H.Y. Influence of light-curing distances on microflexural strength of two resin-based composites. Oper Dent. 2020; 45 (3): 297-305.

El-Askary F.S., El-Korashy D.I. Influence of shade and light-curing distance on the degree of conversion and flexural strength of a dual-cure core build-up resin composite. Am J Dent. 2012; 25 (2): 97-102.

Rueggeberg F.A., Cole M.A., Looney S.W., Vickers A., Swift E.J. Comparison of manufacturer-recommended exposure durations with those determined using biaxial flexure strength and scraped composite thickness among a variety of light-curing units. J Esthet Restor Dent. 2009; 21 (1): 43-61.

Özcan C., Lestriez P., Berry-Kromer V., Thiebaud F., Sockalingum G.D., Untereiner V., et al. Misinterpretation of ISO 4049 standard recommendations: Impact on Young’s modulus and conversion degree of dental composites. J Mech Behav Biomed Mater. 2020; 110: 103947.

McNaught A., Wilkinson A. IUPAC compendium of chemical terminology. Int Union Pure Appl Chem. 1997; 19: 458-65.

Haifa B. Led Dental photopolymerization. A literature review. Int J Med Dent. 2021; 25: 53-62.

##plugins.facebook.comentarios##

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Javier F. Roque Trujillo, Fabián Murillo-Gómez

Downloads

Download data is not yet available.