Agronomía Mesoamericana

Literature review

Volumen 34(2): Artículo 51077, 2023

e-ISSN 2215-3608, https://doi.org/10.15517/am.v34i2.51077

https://revistas.ucr.ac.cr/index.php/agromeso/index

Fish waste silage, a green process for low feedstock availability. A Review1

Ensilado de desechos de pescado, una actividad sustentable para bajos volúmenes de procesamiento

Claudia Carina Libonatti2, Daniela Alejandra Agüería2, Javier Breccia3

1 Reception: May 24th, 2022. Acceptance: December 2nd, 2022. This work is part of a doctoral thesis title: “Application of commercial starters of lactic acid bacteria in the fermentation of common hake (Merluccius hubbsi) for use in animal nutrition”. This work was supported by the Secretary of Science, Art and Technology (National University of the Center of the Buenos Aires Province).

2 National University of the Center of the Buenos Aires Province. Faculty of Veterinary Science (Veterinary Animal Production, PROANVET). Pinto 399. Tandil – Buenos Aires, Argentina. redlab@vet.unicen.edu.ar (corresponding author, https://orcid.org/0000-0002-5379-6730); dagueria@vet.unicen.edu.ar (https://orcid.org/000-001-7917-6196).

3 National University of La Pampa. Institute of Earth and Environmental Sciences of La Pampa (National Council of Scientific and Technical Research, CONICET). Av. Uruguay 151, Santa Rosa, La Pampa, Argentina. javierbreccia@gmail.com (https://orcid.org/0000-0003-3692-0995).

Abstract

Introduction. Different fishing activities generate a waste volume related to the processing species (viscera, heads and bones), the discards of the companion fauna, species of low commercial value and the losses related to handling problems. Fish meal production is the most common process for recovery nutrients from these fish processing byproducts. However, those places with reduced infrastructure or where the volume of wastes produced do not justified the economic equation for conversion into fish meal or oil, the biological silage could be the technology of choice to promote a sustainable waste management. Objective. To compilate, organize and summarize literature related to biological fermentation of fish waste and its applications. Development. A bibliographic review was carried out (January 1994 - December 2020) referring to the comprehensive use of fishing residues mainly focused on the use of lactic acid bacteria in fish waste fermentation. The information was organized in different sections: fish silage, lactic acid bacteria and carbohydrate sources for biological silage. Conclusions. The studies analyzed in this review highlight the possibility of using a wide variety of carbohydrate sources, biological starters and fish waste fermentation conditions. The satisfactory results show the potential use of fish waste in different applications. This work could contribute to the fisheries that decide to adopt this kind technology in order to provide an innovative and viable recycling bioeconomy.

Keywords: fishery, discard, acid lactic bacteria, fermentation, byproducts.

Resumen

Introducción. Las actividades pesqueras generan un volumen de desechos relacionados con el procesamiento de especies (vísceras, cabezas y espinas), los descartes de la fauna acompañante, especies de bajo valor comercial y pérdidas relacionadas con problemas de manejo. La producción de harina de pescado es el proceso más común para recuperar los nutrientes de los subproductos del procesamiento del pescado. Sin embargo, aquellos lugares con infraestructura reducida o donde el volumen de residuos producidos no justifique la ecuación económica para la conversión en harina o aceite de pescado, el ensilaje biológico podría ser la tecnología de elección para promover una gestión sostenible de los residuos. Objetivo. Recopilar, organizar y resumir la literatura relacionada con la fermentación biológica de residuos de pescado y sus aplicaciones. Desarrollo. Se realizó una revisión bibliográfica (enero 1994 – diciembre 2020) referida al aprovechamiento integral de los residuos de la pesca, principalmente focalizada a la utilización de las bacterias ácidos lácticas en la biofermentación de los mismos. La información se organizó en diferentes secciones: ensilado de pescado, bacterias acido lácticas, fuentes de hidratos de carbono referidas a la elaboración de ensilados biológicos de pescado. Conclusiones. Los estudios analizados destacan la posibilidad de utilizar una amplia variedad de fuentes de hidratos de carbono, iniciadores biológicos y condiciones de fermentación de desechos de pescado. Los resultados satisfactorios muestran el potencial uso de los desechos de pescado en diferentes aplicaciones. Este trabajo podría aportar a las pesquerías que quieran adoptar esta tecnología para el tratamiento adecuado de los residuos con la finalidad de contribuir a la bioeconomía de reciclaje.

Palabras clave: pesquería, descarte, bacterias ácido lácticas, fermentación, subproductos.

Introduction

Fishing-related activities fulfill the dual function of representing a major source of food worldwide and constitute as a livelihood for a large number of people. World fish production was estimated to be about 179 million tons in 2018 (with China, Peru, Chile and Japan being the main marine fish catcher countries), where 83 % was used for human consumption and most of the rest ended up as fishmeal and fish oil (Organización de las Naciones Unidas para la Alimentación y la Agricultura [FAO], 2020). The different fishing activities result in a waste volume related to the processing of species (filleting cuts, viscera, heads, and bones), the discards of the companion fauna, species of low commercial value or the losses related to handling problems (FAO, 2014; Toledo Pérez & Llanes Iglesias 2006).

Fish waste represented half of the raw material volume of the industry and is a source of low–cost nutrients (Oetterer, 2002). The use of fishing waste in different parts of the world is allocated to animal feed and is of great interest as it represents an environmental and public benefit as well as reducing the cost of animal production. However, there were numerous reports about diverse products such as finfish or shellfish wastes for biodiesel, biogas as well as source of natural pigments and chitin (Cadavid-Rodríguez et al., 2019; Castro et al., 2018; Cira et al., 2002; dos Santos et al., 2015; Nges et al., 2012).

In countries such as Argentina, Norway, and China, waste generated from fishing activities is mainly used to produce fishmeal and oils (Ramírez, 2013). When fish were fed with animal protein, mainly fish meal, growth indicators and feed utilization were improved (Zhoug et al., 2004). Fish meal production is the most common process for recovery the nutrients from fish processing byproducts. However, the long distances to fish meal plants, the cost of transport, and law restrictions on fish meal production reduce the feedstock and raise the price of fish meal (Palkar et al., 2017). Since high costs and limited availability of fishmeal have forced companies to reduce or eliminate this component in their products, the situation promotes alternative processes where fish silage could be a promising choice (Hardy, 2010; Tacon & Metian, 2008).

Fish silage production is a technology with lower costs. Although fish silage preparation usually depends on the locally available raw materials and conditions, it recovers the nutrients contained in fishery residues and allows their use as animal feed (Ferraz de Arruda et al., 2007; Gomez et al., 2014; Inoue et al., 2013; Valério Geron et al., 2007). The use of fish processing waste could reduce the cost of producing fish feed by approximately 15 to 20 % (Li et al., 2009). Although the amount of fishmeal replacement depends on fish species specific on and its growth stage (Moon & Gatlin, 1994; Mondal et al., 2011), 75 % fish meal could be replaced without any compromise on the growth and nutritive value of the raw material (Cheng et al., 2003).

The silage provides a double benefit: it protects the environment against the risk of contamination generated by untreated waste and reduces the costs of animal feed production (Samaddar & Kaviraj, 2014). The aim of this review was to compile, organize and summarize literature related to biological fermentation of fish waste and its applications.

Fish silage

Fish silage is an ancient preservation technique (Raa et al., 1982) that was adopted in the 1930s from a method that using sulfuric and hydrochloric acids to preserve forages (Hammoumi et al., 1998). The process involve crushing fish, which accelerates the pH reduction to 4. This result in a semi-liquid product is rich in proteins, amino acids, phosphorus, and calcium. The product has a slight malted smell and can be used as protein source in animal feed (Raa et al., 1982), particularly for fish (Goddard & Al-Yahyai, 2001; Pinto de Carvalho et al., 2006; Vidotti et al., 2002) and chickens (Bello, 1997).

Some investigations demonstrated that fish silage has the potential to be used as a nitrogen source and probiotic ingredient for poultry feeding (Hammoumi et al., 1998). In their study, the chemical and physico-chemical properties of raw sardine waste and the resulting silage were compared. The silage was found to contain an average of 11.34 % protein, 6.12 % fat, and 7.94 % ash.

Additionally, the potential of sardine waste silages as fishmeal substitute for fishmeal in the production of Dicentrachus labrax was assessed. Fermentation with Lactobacillus plantarum, supplemented with molasses and organic acid acidification at 35 °C resulted in a product with 13.2 % protein, 12 % fat, and 2.1 % ash (Davies et al., 2020). Although there were variations in the composition of silages, these values were quite similar to those obtained from the previous study and could be attributed to differences in the raw materials used.

The main cause of liquefaction of fish silages is considered to be the lower pH value and the endogenous enzymatic activities. This process can be achieved by either chemical or biological means, with the purpose of reducing the pH to inhibit the spoilage flora and extend the preparation’s half-life (Dapkevicius et al., 2000; Raa et al., 1982). The rapid decrease in pH promotes favorable microbiological and enzymatic processes that help preserve the quality of fish silage (Ramírez Ramírez, 2009).

Chemical fish waste silage can be prepared by direct acidification with organic acid, inorganic acid, or mixture of both (Copes et al., 2006; Fagbenro & Jauncey, 1993; Gullu et al., 2015; Toledo Pérez & Llanes Iglesias, 2006). While the cost of organic acids is higher than mineral acids such as hydrochloric acid and sulfuric acid, handling inorganic acids requires trained operator and safety equipment. Organic acids like formic acid and propionic acid are less dangerous and have higher bactericidal and antifungal effects (Wicki et al., 2007).

The quality and freshness of raw materials are crucial for the production of silage since protein digestibility, fatty acids content, and vitamins levels depend on them (van ’t Land et al., 2017). This is particularly important for a product that may be used in aquaculture and animal production.

Fermentation using lactic acid bacteria is preferable to chemical silage because it has beneficial effects such as antibacterial activity and prevents lipid oxidation during ripening (Raa et al., 1982). Lactic acid bacteria produce various compounds that inhibit spoilage microflora, including organic acids, diacetyl, hydrogen peroxide, and bacteriocins (Yusuf & Hamid, 2013).

The freshness of the fish waste used for silage production is generally considered important, but the raw material may sometimes have microbiological variability due to conditions at the fishing plants. To homogenize the raw material and reduce the microbiological load, Góngora et al. (2012) cooked the fish waste before chopping it.

Although the silage technology is simply, it has some disadvantages such as high water content, making it difficult to transport. Co-dried fish silage used as an aquafeed ingredient that is easy to package, store, and transport. Some aquaculture experiences have used fish silage with co-dried ingredients such as soybean, cornbean, barley flour, and wheat bran (Fagbenro & Jauncey, 1994a; Najim et al., 2014). Fagbenro & Jauncey (1995) highlighted that fermented fish silage co-dried with protein feedstuffs can provide up to 50 % of dietary protein without affecting feed efficiency, fish growth, or health.

Lactic acid bacteria (LAB)

Lactic acid bacteria (LAB) are Gram positive, non-sporulated, coccus or bacillus bacteria that can ferment carbohydrates and produce lactic acid as the main fermentation product (Hayek & Ibrahim, 2013). LAB belongs to the Phylum Firmicutes, class Bacilli, order Lactobacillales, and are distributed across five different families, 62 genera, and over 500 species of low guanine-cytosine content (33-51 %) bacteria. The Lactobacillaceae family includes most of GRAS species (GRAS: Generally Recognized as Safe, US-FDA) within 31 genera to date. Currently, the delineation of taxonomic ranges is based on phylogenetic analysis, average nucleotide identities (AAI), physiological characteristics, and ecological niche (Zheng et al., 2020).

The most commonly used LAB as starter cultures in the production of biological silages are Lactobacillus spp., Carnobacterium spp., Leuconostoc mesenteroides, Pediococcus acidilactici (Bhaskar et al., 2007; Faid et al., 1994; Fagbenro & Jouncey, 1995; Vazquez et al., 2008; Vazquez et al., 2011). Some of the more well-known species for their high synergism and mutualism used in commercial yogurt production are Lactobacillus bulgaricus and Streptococcus thermophilus (Fernández Herrero et al., 2013; Fernández Herrero et al., 2015; Valério Geron et al., 2007). However, some processes have been performed by native LAB strains isolated from fish (Gelman et al., 2001; Holguín et al., 2009).

Researchers have evaluated the use of Weissella paramesenteroides, isolated from bee bread, as a potential tool for biological fish silage through encapsulation (Libonatti et al., 2018).

Certain LAB strains are considered probiotic due to their beneficial effects on the digestive tract and immune system of consumers. Evidence supports the use of LAB in animal production (Espeche et al., 2012; Topic Popovic et al., 2017; Zhang et al., 2012), including in aquaculture, where probiotics have been shown to activate non-specific immune responses and increase the number of erythrocytes, granulocytes, macrophages, and lymphocytes in various fish species (Irianto & Austin, 2003; Kim & Austin, 2006; Nayak et al., 2007).

In recent years, the applications of LAB have been extended beyond probiotics. Gaspar et al. (2013) particularly highlight the use of LAB as cell factories for the production of high-value complex pharmaceuticals and food ingredients, such as colors, aromas, and texturizing agents. For the specific purpose of fish fermentation, Lactobacillus plantarum and other species within the plantarum group have been found the better adapted bacteria (Bhaskar et al., 2007; Castro et al., 2018; Dapkevičius et al., 1998; Davies et al., 2020; Evers & Carroll, 1996; Faid et al., 1994; Fagbenro & Jouncey, 1994a; 1994b; Fagbenro & Jouncey, 1995; Góngora et al., 2012; Hammoumi et al., 1998; Vázquez et al., 2008; Vázquez et al., 2011).

Sources of carbohydrates for biological silages

Fish has a low concentration of carbohydrates, so it is necessary to add an aditional source of these substrates to increase the production of lactic acid during fermentation (Góngora et al., 2012; Ramírez Ramírez, 2009). Therefore, the selection of the carbohydrate and its appropriate level are determining factors in achieving efficient systems for fast acidification within the economic equation of the process (Cira et al., 2002; Davies et al., 2020; Góngora et al., 2012). The availability of the substrate in the region where the silage is produced is key condition for an economically sustainable process (Parín & Zugarramurdi, 1997).

Several sources of substrates have been tasted for fish fermentation, including molasses (Table 1), sucrose, high fructose corn syrup, whey, honey, glucose, and fruits (Table 2). Molasses is one of the most widely used substrates due to its high content of soluble carbohydrates, low cost, and the ability to improve the stability and sensory characteristics of the silages (Evers & Carroll, 1996; Fagbenro & Jauncey, 1998; Zahar et al., 2002). However, other reports have highlighted the potential of carbon sources from vegetable and fruit waste (Bello, 1997; Davies et al., 2020).

Table 1. Research that uses molasses as a carbohydrate source in the production of biological fish silage.

Tabla 1. Estudios que utilizan la melaza como fuente de hidratos de carbono en la elaboración de ensilado biológico de pescado.

Table 2. Research that uses glucose, honey, sucrose and other carbohydrates in the production of biological fish silage.

Tabla 2. Estudios que utilizan glucosa, miel, sacarosa y otros hidratos de carbono en la elaboración de ensilados biológicos de pescado.

Around half of the articles reviewed related to fish silage (23 articles) were conducted to the elaboration of biological silage as additive for animal feed, the rest were focused on other applications such as chitin, carotenoids, peptones extraction, oils recovery and methane production (Table 3).

Table 3. Applications of biological fermentation of fish waste.

Tabla 3. Aplicaciones de la fermentación biológica de residuos de pescado.

Conclusions

This comprehensive review provides valuable insights into the potential of utilizing a range of carbohydrate sources, biological starters, and fish waste for fermentation processes. The findings highlight the feasibility of using fish waste for various applications, including the recovery of chemicals from fish biomass. By promoting the use of this sustainable technology, this work can help to advance the transition towards a circular bioeconomy and contribute to the scientific community’s efforts to find eco-friendly solutions for waste valorization and resource recovery.

References

Ahmed, J. & Mahendrakar, N. S. (1996). Autolysis and rancidity development in tropical freshwater fish viscera during fermentation. Bioresource Technology, 58(3), 247–251. https://doi.org/10.1016/S0960-8524(96)00085-5

Bello, R. A. (1997). Experiencias con ensilado de pescado en Venezuela. En V. Figueroa & M. Sánchez (Eds.), Tratamiento y utilización de residuos de origen animal, pesquero y alimenticio en la alimentación animal [Estudio FAO producción y sanidad animal 134] (pp. 1–14). Organización de Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/3/w4132s/w4132s.pdf

Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response Surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme and Microbial Technology, 40(5), 1427–1434. https://doi.org/10.1016/j.enzmictec.2006.10.019

Cadavid-Rodríguez, L. S., Vargas-Muñoza, M. A., & Plácido, J. (2019). Biomethane from fish waste as a source of renewable energy for artesanal fishing communities. Sustainable energy Technologies and Assessments, 34, 110–115. https://doi.org/10.1016/j.seta.2019.05.006

Castro, R., Guerrero-Legarreta I., & Bórquez, R. (2018). Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation. Biotechnology Reports, 20, Article e00287. https://doi.org/10.1016/j.btre.2018.e00287

Cheng, Z. J., Hardy, R. W., & Usry, J. L. (2003). Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture, 215(1–4), 255–265. https://doi.org/10.1016/S0044-8486(02)00166-7

Cira, L. A., Huerta, S., Hall G. M., & Shirai, K. (2002). Pilot scale lactic acid fermentation of shrimp wastes for chitin. Process Biochemistry, 37(12), 1359–1366. https://doi.org/10.1016/S0032-9592(02)00008-0

Copes, J., Pellicer, K., del Hoyo, G., & García Romero, N. (2006). Producción de ensilado de pescado en baja escala para uso de emprendimientos artesanales. Analecta Veterinaria, 26(1), 5–8. https://bit.ly/3wGYTuu

Dapkevičius, M. L. E., Batista, I., Nout, M. J. R, Rombou, F. R., & Houben J. H. (1998). Lipid and protein changes during the ensilage of blue whiting (Micromesistius poutassou Risso) by acid and biological methods. Food Chemistry, 63(1), 97–102. https://doi.org/10.1016/S0308-8146(97)00156-8

Dapkevicius, M. L. N. E., Nout, M. J. R., Rombouts, F. M., Houben, J. H., & Wymenga, W. (2000). Biogenic amine formation and degradation by potential fish silage starter microorganisms. International Journal of Food Microbiology, 57(1–2), 107–114. https://doi.org/10.1016/S0168-1605(00)00238-5

Davies, S. J., Guroy, D., Hassaan, M. S., El-Ajnaf, S. M., & El-Haroun, E. (2020). Evaluation of co-fermented apple-pomace, molasses and formic acid generated sardine based fish silages as fishmeal substitutes in diets for juvenile european sea bass (Dicentrachus Labrax) production. Aquaculture, 521, Article 735087. https://doi.org/10.1016/j.aquaculture.2020.735087

dos Santos, C. E., da Silva, J., Zinani, F., Wander, P., & Gomes, L. P. (2015). Oil from the acid silage of Nile tilapia waste: Physicochemical characteristics for its application as biofuel. Renewable Energy, 80, 331–337. https://doi.org/10.1016/j.renene.2015.02.028

Espeche, M. C., Pellegrino, M., Frola, I., Larriestra, A., Bogni, C., & Nader-Macías, M. E. F. (2012). Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis. Anaerobe, 18, 103–109. https://doi.org/10.1016/j.anaerobe.2012.01.002

Evers, D. J., & Carroll, D.J. (1996). Preservation of crab or shrimp waste as silage for Cattle. Animal Feed Science Technology, 59(4), 233–244. https://doi.org/10.1016/0377-8401(95)00908-6

Fagbenro, O., & Jauncey, K. (1993). Chemical and nutritional quality of raw, cooked and salted fish silages. Food Chemistry, 48(4), 331–335. https://doi.org/10.1016/0308-8146(93)90313-5

Fagbenro, O., & Jauncey, K. (1994a). Growth and protein utilization by juvenile catfish (Clarias gariepinus) fed moist diets containing autolysed protein from stored lactic-acid-fermented fish-silage. Bioresource Technology, 48(1), 43–48. https://doi.org/10.1016/0960-8524(94)90134-1

Fagbenro, O., & Jauncey, K. (1994b). Chemical and nutritional quality of fermented fish silage containing potato extracts, formalin or ginger extracts. Food Chemistry, 50(4), 383–388. https://doi.org/10.1016/0308-8146(94)90209-7

Fagbenro, O., & Jauncey, K. (1995). Growth and protein utilization by juvenile catfish (Clarias gariepinus) fed dry diets containing co-dried lactic-acid-fermented fish silage and protein feedstuffs. Bioresource Technology, 51(1), 29–35. https://doi.org/10.1016/0960-8524(94)00064-8

Fagbenro, O. A., & Jauncey, K. (1998). Physical and nutritional properties of moist fermented fish silage pellets as protein supplement for tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 71(1–2), 11–18. https://doi.org/10.1016/S0377-8401(97)00123-5

Faid, M., H., Karani, A., Elmarrakchi, & Achkari-Begdouri, A. (1994). A biotechnological process for the valorization of fish waste. Bioresource Technology, 49(3), 237–241. https://doi.org/10.1016/0960-8524(94)90046-9

Fernández Herrero, A. L., Tabera, A., Agüeria, D., & Manca, E. (2013). Obtención, caracterización microbiológica y físico-química de ensilado biológico de anchoita (Engraulis anchoita). Revista Electrónica de Veterinaria, 14(2), 1–15.

Fernández Herrero, A. L., Fernández Compás, A., & Manca, E. (2015). Ensayo preliminar de obtención de ensilado biológico de anchoita (Engraulis Anchoita), utilizando hez de malta de cebada (Hordeum Vulgare L) como fuente de hidratos de carbono. Revista Electrónica de Veterinaria, 16(3), 1–13.

Ferraz de Arruda, L., Borghesi, R., & Oetterer, M. (2007). Use of fish waste silage- A Review. Brazilian Archives of Biology and Technology, 50(5), 879–889. https://doi.org/10.1590/S1516-89132007000500016

Gaspar, P., Carvalho, A. L., Vigna, S., Santos, H., & Rute Neves, A. (2013). From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 31(6), 764–788. https://doi.org/10.1016/j.biotechadv.2013.03.011

Gelman, A., Drabkin, V., & Glatman, L. (2001). Evaluation of lactic acid bacteria, isolated from lightly preserved fish products, as starter cultures for new fish-based food products. Innovative Food Science & Emerging Technologies, 1(3), 219–226. https://doi.org/10.1016/S1466-8564(00)00023-0

Gomez, G., Ortiz, M., Perea, C., & Lopez, F. (2014). Evaluación del ensilaje de vísceras de tilapia roja (Oreochromis spp) en alimentación de pollos de engorde. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(1), 106–114. https://bit.ly/3LJNcsn

Goddard, J. S., & Al-Yahyai D. S. S. (2001). Chemical and nutritional characteristics of dried sardine silage. Journal of Aquatic Food Product Technology 10(4), 39–50. https://doi.org/10.1300/J030v10n04_04

Góngora, H. G., Ledesma, P., Lo Valvo, V. R., Ruiz, A. E., & Breccia, J. D. (2012). Screening of lactic acid bacteria for fermentation of minced wastes of Argentinean hake (Merluccius hubbsi). Food and Bioproducts Processing, 90(4), 767–772. http://doi.org/10.1016/j.fbp.2012.04.002

Góngora, H. G., Maldonado, A. A., Ruiz, A. E., & Breccia, J. D. (2018). Supplemented feed with biological silage of fish-processing wastes improved health parameters and weight gain of mice. Engineering in Agriculture, Environment and Food, 11(3), 153–157. https://doi.org/10.1016/j.eaef.2018.04.001

Gullu, K., Guzel, S., & Tezel, R. (2015). Producing silage from industrial waste of fisheries. Ekoloji, 24(95), 40–98. https://hdl.handle.net/20.500.12809/3213

Hammoumi, A., Faid, M., El yachioui, M., & Amarouch, H. (1998). Characterization of fermented fish waste used in feeding trials with broilers. Process Biochemistry, 33(4), 423–427. https://doi.org/10.1016/S0032-9592(97)00092-7

Hardy, R. W. (2010). Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770–776. https://doi.org/10.1111/j.1365-2109.2009.02349.x

Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 4(11A), 73–87. http://doi.org/10.4236/fns.2013.411A010

Holguín, M. S., Caicedo, L. A., & Veloza, L. C. (2009). Estabilidad de almacenamiento de ensilados biológicos a partir de residuos de pescado inoculados con bacterias ácido-lácticas. Revista de la Facultad de Medicina Veterinaria y Zootecnia, 56(2), 95–104. https://revistas.unal.edu.co/index.php/remevez/article/view/13390

Inoue, S., Suzuki-Utsunomiya, K., Komori, Y., Kamijo, A., Yumura, I., Tanabe, K., Miyawaki, A., & K. Koga. (2013). Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice. Journal of Bioscience and Bioengineering, 116(6), 682–687. http://doi.org/10.1016/j.jbiosc.2013.05.022

Irianto A., & Austin, B. (2003). Use of dead probiotic cells to control furunculosis in rainbow trout, Onchorhynchus mykiss (Walbaum). Journal of Fish Diseases, 26, 59–62. https://doi.org/10.1046/j.1365-2761.2003.00414.x

Kim, D. -H., & Austin, B. (2006). Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Veterinary Immunology and Immunopathology, 114(3-4), 297–304. https://doi.org/10.1016/j.vetimm.2006.08.015

Kumar Rai, A., Swapnaa, H. C., Bhaskara, N., Halamib, P. M., & Sachindraa, N. M. (2010). Effect of fermentation ensilaging on recovery of oil from fresh water fish víscera. Enzyme and Microbial Technology, 46(1), 9–13. https://doi.org/10.1016/j.enzmictec.2009.09.007

Libonatti, C., Agüeria, D., García, C., & Basualdo, M. (2018). Weissella paramesenteroides encapsulation and its application in the use of fish waste. Revista Argentina de Microbiología, 51(1), 81–83. https://doi.org/10.1016/j.ram.2018.03.001

Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37, 43–53. https://doi.org/10.1007/s00726-008-0171-1

Llanes Iglesias, J. E., Toledo Pérez, J., & Lazo de la Vega Valdez, J. M. (2010). Evaluación de desechos de pescado frescos y ensilados en la alimentación de híbridos de Clarias gariepinus x Clarias macrocephalus. Revista Cubana de Investigaciones Pesqueras, 27(1), 21–25. http://hdl.handle.net/1834/4106

Mondal, K., Kaviraj, A., & Mukhopadhyay, P. K. (2011). Partial replacement of fishmeal by fermented fish-offal meal in the formulation of diet for Indian minor carp Labeobata. Journal of Applied Aquaculture, 23(1), 41–50. https://doi.org/10.1080/10454438.2011.549783

Moon, H. Y. L., & Gatlin III, D. M. (1994). Effects of dietary animal proteins on growth and body composition of the red drum (Sciaenops ocellatus). Aquaculture, 120(3-4), 327–340. https://doi.org/10.1016/0044-8486(94)90089-2

Najim, S. M., Al-Noor, S. S., & Jasim, B. M. (2014). Effects of fish meal replacement with fish biosilage on some haematological and biochemical parameters in common carp Cyprinus carpio fingerlings. International Journal of Research in Fisheries and Aquaculture, 4(3), 112–116.

Nayak, S. K., Swain, P., & Mukherjee, S. C. (2007). Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (Ham). Fish & Shellfish Immunology, 23(4), 892–896. https://doi.org/10.1016/j.fsi.2007.02.008

Nges, I. A., Mbatia, B., & Björnsson, L. (2012). Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction. Journal of Environmental Management, 110, 159–165. http://doi.org/10.1016/j.jenvman.2012.06.011

Oetterer, M. (2002). Industrialização do pescado cultivado. Agropecuária.

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2014). El estado mundial de la pesca y la acuicultura. Oportunidades y desafíos. http://www.fao.org/3/a-i3720s.pdf

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2020). El estado mundial de la pesca y la acuicultura. La Sostenibilidad en acción. https://www.fao.org/3/ca9229es/ca9229es.pdf

Parín, M. A., & Zugarramurdi, A. (1997). Aspectos económicos del procesamiento y uso del ensilado de pescado. En V. Figueroa, M. & Sánchez (Eds.), Tratamiento y utilización de residuos de origen animal, pesquero y alimenticio en la alimentación animal [Estudio FAO producción y sanidad animal 134] (pp. 41–63). Organización de Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/3/w4132s/w4132s.pdf

Palkar, N. D., Koli, J. M., Patange, S. B., Sharangdhar, S. T., Sadavarte, R. K., & Sonavane, A. E. (2017). Comparative study of fish silage prepared from fish market waste by using different techniques. International Journal of Current Microbiology and Applied Sciences, 6(12), 3844–3858. https://doi.org/10.20546/ijcmas.2017.612.444

Pinto de Carvalho, G. G., Vieira Pires, A. J., Mattos Veloso, C., Ferreira da Silva, F., & Aparecida de Carvalho, B. M. (2006). Fish filleting residues silage in tilapia fingerlings diets. Revista Brasileira de Zootecnia, 35(1), 126–130. https://doi.org/10.1590/S1516-35982006000100016

Raa, J., Gildberg, A., & Olley, J. N. (1982). Fish silage: A review. Critical Reviews in Food Science and Nutrition, 16(4), 343–419. https://doi.org/10.1080/10408398209527341

Ramírez, A. (2013). Globefish research programme. Innovative uses of fisheries by-products (Vol. 110). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bb213e/bb213e.pdf

Ramírez Ramírez, J. C. (2009). Aprovechamiento de fauna de acompañamiento del camarón y subproductos pesqueros mediante la elaboración de ensilado de pescado [Tesis de doctorado, Universidad Autónoma Metropolitana]. Repositorio de la Universidad Autónoma Metropolitana. http://tesiuami.izt.uam.mx/uam/aspuam/presentatesis.php?recno=14812&docs=UAMI14812.pdf

Ramírez Ramírez, J. C., Ibarra Espain, J. I., Gutiérrez Leyva, R., Ulloa, J. A., & Rosas Ulloa, P. (2016). Use of biological fish silage in broilers feed: Effect on growth performance and meat quality. Journal of Animal & Plant Sciences, 27(3), 4293–4304. https://doi.org/10.35759/JAnmPlSci.v27-3.4

Shabani, A., Jazi, V., Ashayerizadeh, A., & Barekatain, R. (2019). Inclusion of fish waste silage in broiler diets affects gut microflora, cecal short-chain fatty acids, digestive enzyme activity, nutrient digestibility, and excreta gas emission. Poultry Science, 98(10), 4909–4918. http://doi.org/10.3382/ps/pez244

Samaddar, A., & Kaviraj, A. (2014). Processing of fish offal waste through fermentation utilizing whey as inoculum. International Journal of Recycling of Organic Waste in Agriculture, 3, Article 45. http://doi.org/10.1007/s40093-014-0045-3

Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil industrially compounded aquafeeds: trend and future prospect. Aquaculture, 285(1–4), 146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Toledo Pérez, J., & Llanes Iglesias, J. (2006). Estudio comparativo de los residuos de pescado ensilados por vías bioquímica y biológica. Revista AquaTIC, 25(9), 28–33. http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/206

Topic Popovic, N., Strunjak-Perovic, I., Sauerborn-Klobucar, R., Barisic, J., Jadan, M., Kazazic, S., Kesner-Koren, I., Prevendar Crnic, A., Suran, J., Beer Ljubic, B., Matijatko, V., & Coz-Rakovac, R. (2017). The effects of diet supplemented with Lactobacillus rhamnosus on tissue parameters of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research, 48, 2388–2401. https://doi.org/10.1111/are.13074

Valério Geron, L. J., Zeoula, L. M., Vidotti, R. M., Matsushita, M., Kazama, R., Ferreira Ferreira Caldas Neto, S., & Fereli, F. (2007). Chemical characterization, dry matter and crude protein ruminal degradability and in vitro intestinal digestion of acid and fermented silage from tilapia filleting residue. Animal Feed Science and Technology, 136(3–4), 226–239. https://doi.org/10.1016/j.anifeedsci.2006.09.006

van ’t Land, M., Vanderperren E., & Raes, K. (2017) The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Animal Feed Science and Technology, 234, 284–294. https://doi.org/10.1016/j.anifeedsci.2017.10.009

Vázquez, J. A., Docasal, S. F., Prieto, M. A., González, M. P., & Murado, M. A. (2008). Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera. An approach to bio-silage of fishing by-products. Bioresource Technology, 99(14), 6246–6257. https://doi.org/10.1016/j.biortech.2007.12.006

Vázquez, J. A., Nogueira, M., Durán, A., Prieto, M. A., Rodríguez-Amado, I., Rial, D., González, M. P., & Murado, M. A. (2011). Preparation of marine silage of swordfish, ray and shark visceral waste by lactic acid bacteria. Journal of Food Engineering, 103(4), 442–448. https://doi.org/10.1016/j.jfoodeng.2010.11.014

Vidotti, R. M., Carneiro, D. J., & Viegas, E. (2002). Growth rate of Pacu, Piaractus mesopotamicus, fingerlings fed diets containing co-dried fish silage as replacement of fish meal. Journal of Applied Aquaculture, 12(4), 77–88. http://dx.doi.org/10.1300/J028v12n04_07

Wicki, G., Panne, S., Alvarez, M., & Romano, L. (2007). Tecnologías de ensilados desarrollados en Argentina. En G. Wicky, G. Dapello, & M. Alvarez, (Ed.), Desarrollo y utilización de ensilado ácido como componente para peces (pp. 19–30). Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Yusuf, M. A., & Hamid, T. H. A. T. A. (2013). Lactic acid bacteria: Bacteriocin producer: A mini review. IOSR Journal of Pharmacy, 3(4), 44–50. http://www.iosrphr.org/papers/v3i4/part.1/I034044050.pdf

Zahar, M., Benkerroum, N., Guerouali, A., Laraki, K., & El Yakoubi, K. (2002). Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses. Bioresources Technology, 82(2), 171–176. https://doi.org/10.1016/S0960-8524(01)00165-1

Zhang, J. L., Xie, Q. M., Ji, J., Yang, W. H., Wu, Y. B., Li, C., Ma, J. Y., & Bi, Y. Z. (2012). Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poultry Science, 91(11), 2755–2760. https://doi.org/10.3382/ps.2012-02339

Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107

Zhoug, Q. -C., Tan, B. -P., Mai, K. -S., & Liu, Y. -J. (2004). Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture, 241(1–4), 441–451. https://doi.org/10.1016/j.aquaculture.2004.08.044

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Puede hallar permisos más allá de los concedidos con esta licencia en pccmca@gmail.com