Agronomía Mesoamericana

Scientific article

Volumen 36: Artículo 59765, 2025

e-ISSN 2215-3608, https://doi.org/10.15517/am.2024.59765

https://revistas.ucr.ac.cr/index.php/agromeso/index

Soil organic carbon storage in different agroforestry systems associated with coffee in Nariño, Colombia*

Almacenamiento de carbono orgánico en el suelo en diferentes sistemas agroforestales en asocio con café en Nariño, Colombia

Iván A. Delgado-Vargas1, Natalia Benavides Franco1

* Reception: May 2nd, 2024. Acceptance: August 14th, 2024. The work was part of a thesis conducted within the framework of the project “Evaluation of Environmental and Productive Functions of Coffee Agroforestry Systems in Three Municipalities of the Department of Nariño,” funded by the Vice-Rectory for Research and Postgraduate Studies [VIPRI] of the University of Nariño. It was conducted between 2019 and 2020.

1 Universidad de Nariño, Agricultural Science Faculty, PIFIL Research Group. San Juan de Pasto, Colombia. ivan.delgado@udenar.edu.co (corresponding author, https://orcid.org/0000-0001-9017-1986); nataliabenavides3@hotmail.com (https://orcid.org/0000-0002-4454-3301).

Abstract

Introduction. Anthropogenic activities are one of the causes of the increase in global temperature, which affects agro-environmental, ecological and socioeconomic processes. The contributions of agricultural production systems in the capture and storage of greenhouse gases have been little studied. Still, the literature indicates that the inclusion of trees on farms is an option to capture and store some greenhouse gases. Objective. To evaluate the relationship between floristic and structural diversity of coffee production systems and soil organic carbon (SOC) storage. Materials and methods. The study was carried out during the period 2019-2020, in three localities Sandoná, San Pablo and Buesaco, Nariño-Colombia. Twelve agroecosystems with coffee were visited, where Shannon-Weiner and Simpson indices, tree density and complete soil analysis with samples at 30 cm depth were evaluated. An analysis of variance and principal components was sufficient for the analysis of the information. Results. The SOC was not presented statistical differences (p>0.05), which ranged between 38.55 Mg ha-1 in the full sun coffee arrangement in Buesaco and 96.63 Mg ha-1 in the coffee arrangement with miscellaneous in the same municipality, which presented the highest species diversity. Conclusions. It was proved that the coffee harvest associated with agroforestal systems (T3 and T4) with higher diversity and abundance of species, is higher than carbon accumulated in the soil compared to the monoculture arrangement (80,43 Mg ha-1 vs 58,32 Mg ha-1, severally), this diversification give to the family and enviroment some services and goods, contributing to the mitigation of climate change.

Keywords: Ecosystem services; agroforestry, soil conservation, Coffea.

Resumen

Introducción. Las actividades antropogénicas son una de las causas del aumento de la temperatura global, lo que afecta los procesos agroambientales, ecológicos y socioeconómicos. Las contribuciones de los sistemas de producción agrícola en la captura y almacenamiento de gases de efecto invernadero han sido poco estudiadas, pero la literatura indica que la inclusión de árboles en las fincas es una opción para capturar y almacenar algunos gases de efecto invernadero. Objetivo. Evaluar la relación entre la diversidad florística y estructural de los sistemas de producción de café y el carbono orgánico almacenado en el suelo (COS). Materiales y métodos. El estudio se llevó a cabo en durante el período 2019-2020, en tres localidades Sandoná, San Pablo y Buesaco, Nariño-Colombia. Se visitaron doce agroecosistemas con café, donde se evaluó los índices de Shannon-Weiner y Simpson, la densidad de árboles y el análisis completo del suelo con muestras a 30 cm de profundidad. Un análisis de varianza y componentes principales fueron suficientes para el análisis de la información. Resultados. El COS no presentaron diferencias estadísticas (p>0,05), el cual varió entre 38,55 Mg ha-1 en el arreglo de café a pleno sol en Buesaco y 96,63 Mg ha-1 en el arreglo de café con misceláneas en el mismo municipio, el cual presentó la mayor diversidad de especies. Conclusiones. Se demostró que, el cultivo de café en asocio con sistemas agroforestales (T3 y T4) con mayor diversidad y abundancia de especies, supera el carbono acumulado en el suelo en comparación con el monocultivo de café (80,43 Mg ha-1 vs 58,32 Mg ha-1, respectivamente); esta diversificación provee de bienes y servicios a la familia y al ambiente al contribuir a la mitigación del cambio climático.

Palabras claves: servicios ecosistémicos, agroforestería, conservación de suelos, Coffea.

Introduction

Since ancient times, the Earth has experienced fluctuations in climate due to variations in temperature, humidity, atmospheric pressure, and precipitation, among other phenomena. These fluctuations include changes in average weather conditions that result in abnormal climatic behavior across spatial scales. Such changes may represent either a temporary transition, known as the climatic variability, or a prolonged modification, indicative of a long-term process such as climate change (Ruíz Murcia et al., 2015).

The increase in greenhouse gas (GHG) emissions due to anthropogenic activities has shown a significant upward trend, with interannual statistics indicating an average increase of 1,3 % between 1970 and 2000, and of 2.2 % between 2000 and 2010 (Intergovernmental Panel on Climate Change [IPCC], 2023). This has become a global issue, affecting socioeconomics process (e.g., increaded incidence of diseases and pests), agro-environmental factors (e.g., greater reliance on agrochemical inputs), ecological aspects (e.g., glacier melting and deforestation), and sociocultural dynamics (e.g., loss of traditional knowledge and forced migrations). Consequently, the planet’s average temperature could rise by up to 2.5 °C (Andrade et al., 2022; Leonel et al., 2023).

In Colombia, El Niño-Southern Oscillation is the primary phenomenon driving interannual precipitation variability, significantly influencing on rainfall patterns, particularly in the southwest of the country (Cerón et al., 2021). This climatic imbalance has substantial socioeconomic consequences, as agriculture heavily depends on rainfall patterns and seasonal cycles. Changes in precipitation have led to an increase in pests, alterations in crop vegetative cycles, reduced yields, and threats to food security, among other impacts (Canchala et al., 2022; Ruíz Murcia et al., 2015). As a response, alternative strategies have been sought, including the adoption of agricultural practices that enhance carbon sequestration in the soil. This natural resource plays a crucial role in supporting planetary and community well-being through the ecosystem functions and services it provides (Burbano-Orejuela, 2016).

In Latin America, research has provided insights into various knowledge systems, techniques, and practices that could contribute to climate change mitigation and adaptation. Among these strategies, the adoption of carbon sinks- represented by vegetation, soil, and ocean- has gained attention (Delgado-Vargas, Ballesteros Possú, et al., 2022; Leonel et al., 2023). In particular, agroforestry has been recognized for its incorporation of multiple biodiversity levels through tree species with the potential to be integrated into various agroforestry designs. This approach provides multiple ecosystem services, including soil organic carbon (SOC) storage (Ramos-Prado et al., 2023; Somarriba et al., 2024). Through plant interactions and organisms activity, carbon is transformed into organic matter that can be stored in the soil extended periods (Burbano-Orejuela, 2018).

Despite this progress, research on coffee production systems and agroforestry alternatives in coffee-growing regions as potential carbon sinks remains limited. Therefore, it is crucial to develop studies exploring these interaction and assessing the carbon storage potential of agricultural systems associated with perennial woody species in different coffee production systems in Nariño. This research evaluated the relationship between floristic and structural diversity of coffee production systems and soil organic carbon (SOC) storage.

Materials and methods

Study places

The research was conducted from 2019 to 2020 in the southwestern region of Nariño, Colombia, specially in the municipality of Sandoná (N: 1°17’05”, O: 77°28’16”), in the villages of San Gabriel, Plan Ingenio, San Andrés and San Fernando; in the municipality of San Pablo (N: 1º36’06’’, O: 77º00’15’’) in the villages of El Alto and Alto Llano; and in the municipality of Buesaco (N: 1°23’05”, O: 77°09”23”), in the villages of Veracruz, Hatillo Medina, and Medina Espejo (Table 1).

Table 1. Agroclimatic conditions of the localities Buesaco, San Pablo, and Sandoná, Nariño, Colombia. 2019 – 2020.

Cuadro 1. Condiciones agroclimáticas de las localidades Buesaco, San Pablo y Sandoná, Nariño, Colombia. 2019 – 2020.

The study area is located in a Pre montane Moist Forest (bh – PM) according to the Holdridge life zone system (Holdridge, 1982). The soils are classified as Class II - III, characterized by undulating topography (9 % slope), moderate susceptibility to water and wind erosion, moderate acidity, and moderately restricted drainage (Instituto Geográfico Agustín Codazzi [IGAC], 2004).

Traditional agroforestry systems (AFS) with coffee were selected based on productive age (4 - 5 years), following the methodology proposed by Delgado-Vargas, Ballesteros Possú, et al. (2022), Pinoargote et al. (2017), and Somarriba et al. (2013). A Randomized Complete Block design was used across the study localities (municipalities of Buesaco, San Pablo and Sandoná) with four treatments and three repetitions: coffee in full sun (T1), coffee and banana (T2), coffee and multipurpose trees (T3), and coffee and diverse mix pf species, including Musaceae, multipurpose trees, timber, and fruit trees (T4). A total of twelve experimental units were evaluated.

Floristic and structural diversity of the production systems

To obtain the information, comprehensive agroforestry inventories were conducted, recording all canopy-shading plant species on each farm. The density and floristic composition of the production system were determined, as well as the diversity of plant species.

Dasometric measurements were taken, including tree height, diameter at breast height (DBH), and basal area (measured at 1.30 m). These measurements were categorized by type of multipurpose woody perennial, including fruit trees, forage, firewood species, timber trees, ornamentals, and Musaceae. Aditionally, the percentage of shade was estimated using visual method, and species diversity was assessed using the Shannon-Weiner and Simpson indices.

Estimation of organic carbon storage in the soil

An experimental plot of 10,000 m2 (100 × 100 m) was established for each treatment, following the methodology proposed by Aguilar & Guharay (2002). For soil sampling, 10 random subsamples were collected from each treatment at a depth of 30 cm. These subsamples were the combined to obtain a composite sample of 1 kg. In the laboratory, carbon content was determined using the combustion method (MacDicken, 1997), and bulk density using the combustion method (Forsythe, 1975), and bulk density was measured using the “cylinder of known volume” method. Additionally, the samples were analyzed to determine various physical and chemical soil properties across the different coffee production systems, as shown in the Table 2.

Table 2. Chemical and physical variables analyzed in soil samples in the Specialized Soil Laboratory. Universidad de Nariño. San Juan de Pasto, Colombia. 2020.

Cuadro 2. Variables químicas y físicas analizadas en las muestras edáficas en laboratorio especializado de suelos. Universidad de Nariño. San Juan de Pasto, Colombia. 2020.

Statistical analysis

A completely randomized block desing was established in the municipalities of Buesaco, San Pablo, and Sandoná, with four treatments and three repetitions. The treatments corresponded to different coffee production systems: coffee in full sun (T1), coffee and banana (T2), coffee and multipurpose trees (T3), and coffee with a diverse mix of Musaceae, multipurpose trees, timber, and fruits trees (T4).

A modified Shapiro-Wilks test was used to assess data normality, followed by a one-way analysis of variance (ANOVA) to determine the significant statistical differences between treatments. Tukey’s test was applied to separate treatment means. Aditionally, principal component analysis (PCA) was performed to identify potential groupings of variables and production systems, considering only variables with a coefficient of variation (CV) greater than 30 %. Data analysis was conducted using R software version 4.3.0 (R Core Team, 2023) with a 95 % confidential level.

Results

Floristic and structural diversity of the production systems

A total of 359 individuals belonging to 37 species and 25 families were recorded. The highest density of woody tree and shrub species was observed in T4 across the three locations, with a total of 108 individuals/ha. Species richness in T3 and T4 ranged between four and twelve multipurpose woody perennial species. The most abundant species recorded were Trichanthera gigantea (Bonpl.) Nees, Musa × paradisiaca L., Cyphomandra betacea (Cav.) Sendtn., Citrus limon (L.) Osbeck, Carica papaya L., Psidium guajava L. On average, four species per coffee plantation were classified, classified by use as follows: 58 % fruit-bearing, 13 % forage, 13 % ornamental, 13 % timber, and 1 % wood energy (firewood), as presented in Table 3.

Table 3. Diversity indices and percentage of shade in the C. arabica production systems in the municipalities of Buesaco, Sandoná, and San Pablo, Nariño, Colombia. 2019 - 2020.

Cuadro 3. Índices de diversidad y porcentaje de sombra en los sistemas productivos de C. arabica de los municipios de Buesaco, Sandoná y San Pablo, Nariño, Colombia. 2019 - 2020.

Higher diversity index values were observed in T3 and T4. Regarding the Jaccard similarity coefficient, the values were close to 0, indicating a decrease in shared species between municipalities. The highest percentage of shade was recorded in T3 and T4, with the most shading species being Palicourea amethystina (Ruiz & Pav.) DC. (90 %), Tabebuia chrysantha (Jacq.) G. Nicholson (83 %), and Mangifera indica L. (71 %) in the municipalities of Sandoná and San Pablo.

Estimation of carbon stored in the soil – SOC

No significant statistical differences were observed in the soil organic carbon (SOC) concentration among the production systems (p > 0.51) (Table 4). However, a trend toward greater carbon accumulation was noted in T4 (coffee, banana, fruit trees, and leguminous plants), with values ranging from 66.63 Mg ha-1 to 86.83 Mg ha-1. Conversely, the lowest accumulation was observed in T1, which values ranging from 38.55 Mg ha-1 to 76.14 Mg ha-1.

Table 4. Total carbon stored in the soil across C. arabica production systems in the municipalities of Buesaco, Sandoná, and San Pablo, Nariño, Colombia. 2019 - 2020.

Cuadro 4. Carbono total almacenado en el suelo en los sistemas productivos de C. arabica de los municipios de Buesaco, Sandoná y San Pablo, Nariño – Colombia. 2019 - 2020.

Principal component analysis

The Principal Component Analysis (PCA) made it possible to form four large factors to explain 81 % of the total variation evaluated (Table 5). The first factor explains 28 % of the variability and is mainly composed of the variables boron (-72.84), phosphorus (-70.5), Shannon (-52.96), and shade (-49.05). This shows that the lack of the tree component that casts shade on the coffee makes the soil present greater phosphorus retention, due to the traditional tillage management. The second factor, which explained 50 % of the variability observed, was mainly composed of the variables total trees per hectare (-50.10), organic matter (-36.93), and diameter at breast height (-25.068), where bulk density and pH stood out. The third factor, which explained 69 % of the total variation related to cation exchange capacity (CEC) (-57.82), soil potassium content (-31.38), shade (-30.37), and Shannon index (-30.31). Finally, the fourth factor showed an 81 % explanation of the variability with the highest contribution of organic matter (-51.55) in this component (Table 6).

Table 5. Total variability of the different components of the production systems of C. arabica in the municipalities of Buesaco, Sandoná, and San Pablo, Nariño, Colombia. 2020.

Cuadro 5. Variabilidad total de los diferentes componentes de los sistemas productivos de C. arabica de los municipios de Buesaco, Sandoná y San Pablo, Nariño – Colombia. 2020.

Table 6. Relative contribution of variables to different components of C. arabica production systems in the municipalities of Buesaco, Sandoná, and San Pablo, Nariño, Colombia. 2019 - 2020.

Cuadro 6. Contribución relativa de las variables a los diferentes componentesde los sistemas productivos de C. arabica de los municipios de Buesaco, Sandoná y San Pablo, Nariño, Colombia. 2020.

The principal component analysis ordination (Figure 1) showed a slight clustering of the variables Shanon-Weiner Index, amount of shade, and boron content, which were represented in the coffee systems with fruit trees and coffee with Musaceae. Similarly, total trees, OM, pH, bulk density, and DBH had a strong influence on component 2.

Figure 1. Principal Component Analysis (PCA) of the physical and chemical properties of the soil, diameter at breast height, shade canopy, and total trees associated with the types of productive systems in C. arabica production systems in the municipalities of Buesaco, Sandoná, and San Pablo, Nariño, Colombia. 2019 - 2020.

pH: Indication of the acidity or alkalinity of soil; OM: Organic matter; CEC: Cation exchange capacity; DBH: Diameter at breast height; Da: apparent density.

Figura 1. Análisis de componentes principales (PCA) entre las propiedades físicas y químicas del suelo, Diámetro a la altura de pecho, dosel de sombra y total de árboles asociado a los tipos de sistemas productivos de C. arabica de los municipios de Buesaco, Sandoná y San Pablo, Nariño, Colombia. 2020.

pH: medición de la alcalinidad o acidez del suelo; MO: Materia orgánica; CIC: Capacidad de intercambio catiónico; Total_arb: total trees; DAP: diámetro a la altura de pecho; Da: densidad aparente.

Hierarchical classification analysis

The hierarchical classification analysis allowed the identification of three hierarchical groups or clusters, characterized by the similarity withing each group and by the differences between the accessions that formed the groups (Figure 2).

Figure 2. MCL dendrogram of the variables evaluated in the C. arabica production systems in the municipalities of Buesaco, Sandoná and San Pablo, Nariño, Colombia. 2019 - 2020.

Figura 2. Dendograma MCL de las variables evaluadas en los sistemas productivos de C. arabica de los municipios de Buesaco, Sandoná y San Pablo, Nariño – Colombia. 2020.

Cluster one groups coffee farms with various crops (coffee, bananas, fruit trees, legumes). In this cluster, there is a significant contribution of boron and phosphorus, equal to or higher than the average of 0.41 and 60 ppm, respectively, compared to the overall average of 0.24 and 20.88 ppm. In cluster two, the coffee systems with free exposure are agglomerated, showing low variability due to the presence of only one component (coffee). There are no woody plants contributing to the DBH, and there is no shade. The variables of this system present mean values lower than the general averages in the Shannon index, DBH, and shade index variables. This correlates with the low amount of organic matter accumulated and, consequently the low capacity of this production system to accumulate carbon. In cluster three, the largest number of production systems is found. These farms contain coffee systems with bananas and coffee with fruit trees. They are the farms with average values in all the indices, having OM percentage of 4.14 %, pH of 5.6, boron content of 0.24, P of 20 ppm, and bulk density of 0.97, among others.

Discussion

The department of Nariño has two agroecological zones with a warm climate and similar agroclimatic characteristics, corresponding to ecotopes 220A and 221A. These areas feature Entic Hapludolls and Typic Argiudolls soils, which belong to the Mollisol order. These are mineral soils (sediments and organic residues) with a high clay content, rich in cations that form bases and nutritive salts (Criollo Escobar et al., 2016; Gómez Cardozo et al., 2018).

In the stratified agroforestry system associated with coffee, a higher carbon/nitrogen (C/N) ratio was observed compared to conventional coffee (T4: 11.10 and T1 11.61). When the C/N ratio ranges between 10 and 14, microbial proliferation is favored, as microorganisms have sufficient carbon as energy source and nitrogen to synthesis. This process enhances the mineralization of nitrogen for protein synthesis. This process enhances the mineralization of nitrogen, making it available for plant uptake (Gamarra Lezcano et al. 2018). An average bulk density of 0.97 gm/cm3 was recorded, which is below the ideal range (1.3 - 3 gm/cm3). However, this does not negatively affect root growth, proper drainage, aeration, and nutrient flow were observed (Alvarado et al., 2013; Forsythe, 1975).

Increasing plant species diversity in coffee system promotes greater carbon accumulation in the soil (Somarriba et al., 2024). This positive interaction between biodiversity indices, organic matter, and Soil Organic Carbon (SOC) stocks is essential for ecosystem functioning, soil health, water cycle regulation, and climate change mitigation (Delgado-Vargas, Leonel et al., 2022; Laban et al., 2018). Therefore, SOC correlates with the abundance of perennial woody plants, which contribute to litter deposition and root biomass, enhancing soil carbon storage and organic matter content. Organic matter alone contains over 1.4 × 1012 Mg ha-1 of carbon, nearly twice the amount found in the atmosphere (Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2002; Villanueva et al., 2023).

Land use and management play a crucial role in carbon storage dynamic, as evidenced by the variability among different production systems (treatments). This variability is associated with factors such as species composition, botanical diversity, and soil cover. Although organic matter content and carbon storage influenced variability, they had relatively low values, leading to no significant differences in carbon storage reports (Somarriba et al., 2024).

Thus, agroforestry emerges as a viable alternative, integrating multipurpose woody perennials (trees/shrubs) into productive systems. This approach fosters biodiversity, contributing to system resilience in the medium and long term. Consequently, the Shannon Index, Simpson Index, and absolute species abundance show significant contrasts in treatments T2, T3, and T4, compared to the monoculture system T1 (Burbano-Orejuela, 2018; Vega Orozco et al., 2014).

Diversity increases as the system is established and reaches a certain level of maturity. Meanwhile, other theories suggest that the incorporation of species into the system- and consequently, the increase in diversity- depends on the producers’ experience and the technical support provided by projects that help achieve productive objectives (Somarriba et al., 2024).

In agroforestry systems (AS) with higher biodiversity (Shannon-Weaver 1.9 and Simpson 0.2), with various perennial woody species but with low abundance, which may represent a diversity of products. So, it is important to plan and design agroforestry to optimize and direct the coffee system to a production of differentiated quality (Delgado-Vargas, Leonel et al., 2022).

In AS, carbon storage rates depend on agro-climatic factors such as plant density, fertility, soil type, site climatic characteristics, age, and forestry management of the production system (Rousseau et al., 2021). When estimating the storage of SOC in coffee production systems under agroforestry systems (AS with coffee and nut, AS with banana and coffee in full sun exposure), no statistical differences were found between AS in the first 30 cm of soil, with an average carbon storage between 33.6 and 72.3 Mg ha-1 (Alvarado et al., 2013). Besides, coffee cultivation in association with Eucalyptus deglupta and Erythrina poepiggiana at different ages, with sampling at 30 cm of soil, showed carbon storage of 66.2 and 87.3 Mg ha-1, respectively (Ávila et al. 2001).

The difference between the storage values may be associated with the life zone where the systems are established and sometimes the sampling depth, since soil C is mainly stored in the surface layer with a tendency to decrease towards the lower layers (Carvajal et al., 2009), in addition to soil processes over time, mainly due to litterfall, as well as mortality and exudation of fine roots, which depends on their distribution and activity (Alvarado et al., 2013). A wide range of carbon accumulation in soils have been found, between 3.9 Mg ha-1 and 90.0 Mg ha-1 (Poveda et al., 2013). On the Ecuadorian coast, in two agroecological zones, values of 66.9 Mg ha-1, 72.0 Mg ha-1, and 78.8 Mg ha-1 were found in AS with coffee and Schizolobium parahybum, coffee and Guadua spp., and coffee and Cordia alliodora, respectively (Hernández Núñez et al., 2021). In seven-year coffee plantations in PBS with Inga densiflora, values of 25.2 Mg ha-1 were reported, while in coffee monocultures, 9.8 Mg ha-1 were found (Hergoualc’h et al., 2012).

It is important to note that fine roots (diameter <2 mm) are the main source of SOC accumulation due to senescence at depths of 0-15 cm, decreasing progressively as the soil depth increases (Delgado Vargas et al., 2016), with up to 75 % of fine roots. Similar trends are reported by Goçalves Tonucci et al. (2023), Siles et al. (2010), and Villanueva et al. (2023) when evaluating the dynamics of SOC in other production systems in the tropics, which is directly proportional to the biological productivity of the system in the first 30 cm of soil (Alvarado et al., 2013; Rodríguez et al., 2022). It has been verified that the selection of tree species can significantly affect the ability of agroecosystems to capture and store atmospheric carbon and maintain nutrient cycles; therefore, the agroforestry planning and the farm plan for its management is essential for the coffee grower, the family organization, and the commitment to carry out the practices for the optimization of the agroforestry system (Leonel et al., 2023). A careful selection of species could optimize the provision of ecosystem services (Ontong, et al., 2023); similarly, it is corroborated that various agroforestry systems cannot store more carbon than monocultures (Xiang et al. 2022).

Conclusions

There was evidence of greater diversity and species abundance in the multi-stratum agroforestry system (semiannual crops, timber trees, fruit trees, mosses, and firewood) in association with coffee (T4), which correlates with a higher accumulation of organic carbon in the soil compared to the coffee monoculture (80.43 t C ha-1 vs. 58.32 t C ha-1, respectively). Such diversification in tree cover is promising for carbon capture and storage efforts, contributing to climate change mitigation.

The principal component analysis allowed the identification of four factors or components, explaining 81 % of the total variability in the evaluated production systems. The variables that contributed the most were P and B content, the Shannon index, number of trees, density, IC, and organic matter. These are associated with diverse agroforestry systems that enhance soil dynamics, improving soil structure and fertility, as well as creating a favorable microclimate for coffee cultivation, thereby promoting greater carbon accumulation and cycling.

Acknowledgement

The authors acknowledge the Vicerrectoría de Investigaciones y Postgrados (VIPRI) of the Universidad de Nariño for funding this work. Special thanks to Dra. Gloria Cristina Luna Cabrera, director of the research group Plan de Investigación y Fortalecimiento Integral de las Comunidades (PIFIL) of the Universidad de Nariño. Authors also extend their gratitude to the coffee-growing families of the municipalities of Buesaco (Villages Medina Espejo and Hatillo Medina), Sandoná (Villages El Ingenio and San Bernardo), and San Pablo (Sidewalk La Chorrera) for their collaboration in the development of this project.

References

Aguilar, A., & Guharay, F. (2002). Cómo realizar un diagnóstico productivo en nuestro cafetal (Serie Cuadernos de Campo). Centro Agronómico Tropical de Investigación y Enseñanza.

Alvarado, J., Andrade, H. J., & Segura, M. (2013). Almacenamiento de carbono orgánico en suelos en sistemas de producción de café (Coffea arabica L.) en el municipio del Líbano, Tolima, Colombia. Colombia Forestal, 16(1), 21–31. https://doi.org/10.14483/udistrital.jour.colomb.for.2013.1.a02

Andrade, H. J., Segura, M., & Somarriba, E. (2022). Above-ground biomass models for dominant trees species in cacao agroforestry systems in Talamanca, Costa Rica. Agroforestry Systems, 96(1), 787–797. https://doi.org/10.1007/s10457-022-00741-y

Ávila, G., Jimenes, F., Beer, J., Gómez, M., & Ibrahim, M. (2001). Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. Agroforestería de las Américas, 8(30), 32–35.

Burbano-Orejuela, H. (2016). El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Revista de Ciencias Agrícolas, 33(2), 117–124. http://dx.doi.org/10.22267/rcia.163302.58

Burbano-Orejuela, H. (2018). El carbono orgánico del suelo y su papel frente al cambio climático. Revista de Ciencias Agrícolas, 35(1), 82–96. http://dx.doi.org/10.22267/rcia.183501.85

Canchala, T., Ocampo-Marulanda, C., Alfonso-Morales, W., Carvajal-Escobar, Y., Cerón, W. L., & Caicedo-Bravo, E. (2022). Techniques for monthly rainfall regionalization in southwestern Colombia. Anais Da Academia Brasileira De Ciências, 94(4), Article e20201000. https://doi.org/10.1590/0001-3765202220201000

Carvajal, A., Feijoo, A., Quintero, H., & Rondón, M. (2009). Carbono orgánico del suelo en diferentes usos del terreno de paisajes andinos colombianos. Revista de la Ciencia del Suelo y Nutrición Vegetal, 9(3), 222–235. http://dx.doi.org/10.4067/S0718-27912009000300005

Cerón, W., Kayano, M. T., Andreoli, R. V., Canchala, T., Carvajal-Escobar, Y., & Alfonso-Morales, W. (2021). Rainfall Variability in Southwestern Colombia: Changes in ENSO-Related Features. Pure and Applied Geophysics, 178, 1087–1103. https://doi.org/10.1007/s00024-021-02673-7

Criollo Escobar, H., Lagos Burbano, T. C., Bacca Ibarra, T., & Muñoz Belalcazar, J. A. (2016). Caracterización de los sistemas productivos de café en Nariño, Colombia. Revista U.D.C.A Actualidad & Divulgación Científica, 19(1), 105–113. https://doi.org/10.31910/rudca.v19.n1.2016.260

Delgado Vargas, I. A., Daza Castillo, J. M., Luna Cabrera, G. C., Leonel, H. F., & Forero Peña, L. A. (2016). Cuantificación de carbono radical Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur en dos agroecosistemas (Nariño, Colombia). Colombia Forestal, 19(2), 85–93. https://doi.org/10.14483/udistrital.jour.colomb.for.2016.2.a06

Delgado-Vargas, I., Ballesteros Possú, W., & Arellano Chungana, V. (2022). Agrobiodiversidad de leñosas multipropósito en sistemas productivos cafeteros. Revista de Investigación Agraria y Ambiental, 13(2), 67–80. https://doi.org/10.22490/21456453.4741

Delgado-Vargas, I. A., Leonel, H. F., Molina-Moreno, Á. A., Ojeda Chávez, N., & Pinta Paz, P. A. (2022). Ethnoedaphology as an integrating process between academy and peasant knowledge in the productive system of coffee (Coffea arabica L.) of Southwestern Colombia. Agricultural Sciences, 13(10), 1013–1030. https://doi.org/10.4236/as.2022.1310062

Forsythe, W. (1975). Manual de laboratorio: Física de suelos. Instituto Interamericano de Cooperación para la Agricultura.

Gamarra Lezcano, C. C., Díaz Lezcano, M. I., Vera de Ortíz, M., Galeano, M. del P., & Cabrera Cardús, A. J. N. (2018). Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales, 9(46), 4–26. https://cienciasforestales.inifap.gob.mx/index.php/forestales/article/view/134

Goçalves Tonucci, R., Falconeres Vogado, R., Dias Silva, R., Fernandes Franco, R. C., Oda-Souza, M., & Antunes de Souza, H. (2023). Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region. Revista Brasileira De Ciência Do Solo, 47, Article e0220124. https://doi.org/10.36783/18069657rbcs20220124

Gómez Cardozo, E., Rousseau, G. X., Celentano, D., Fariñas Salazar, H., & Gehring, C. (2018). Efecto de la riqueza de especies y estructura de la vegetación en el almacenamiento de carbono en sistemas agroforestales de la Amazonía, Bolivia. Revista de Biología Tropical, 66(4), 1481–1495. http://dx.doi.org/10.15517/rbt.v66i4.32489

Hergoualc’h, K., Blanchart, E., Skiba, U., Hénaultf, C., & Harmanda, J.-M. (2012). Changes in carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture, Ecosystems and Environment, 148, 102–110. https://doi.org/10.1016/j.agee.2011.11.018

Hernández Núñez, H. E., Andrade, H. J., Suárez Salazar, J. C., Sánchez, J. R., Gutiérrez, D. R., Gutiérrez García, G. A., Trujillo Trujillo, E., & Casanoves, F. (2023). Almacenamiento de carbono en sistemas agroforestales en los Llanos Orientales de Colombia. Revista de Biología Tropical, 69(1), 352–368. http://dx.doi.org/10.15517/rbt.v69i1.42959

Holdridge, L. R. (1982). Life zone ecology. Tropical Science Center.

Intergovernmental Panel on Climate Change. (2023). AR6 synthesis report: Climate Change 2023. https://www.ipcc.ch/report/ar6/syr/

Instituto Colombiano de Normas Técnicas y Certificación. (2006). NTC 5402 calidad de suelo. Determinación del azufre disponible. https://tienda.icontec.org/wp-content/uploads/pdfs/NTC5402.pdf

Instituto Geográfico Agustín Codazzi. (2004). Estudio general de suelos y zonificación de tierras departamento de Nariño. Escala 1: 100000. https://metadatos.icde.gov.co/geonetwork/srv/api/records/14145369

Instituto Geográfico Agustín Codazzi. (2006). Métodos analíticos del laboratorio de suelos (6a ed.). Imprenta nacional de Colombia.

Laban, P., Metternicht, G., & Davies, J. (2018). Biodiversidad de suelos y carbono orgánico en suelos: cómo mantener vivas las tierras áridas. Unión Internacional para la Conservación de la Naturaleza. https://doi.org/10.2305/IUCN.CH.2018.03.es

Leonel, H. F., Delgado-Vargas, I. A., Molina-Moreno, A. A., & Cadena-Pastrana, Á. M. (2023). Tipificación de fincas cafeteras para la implementación de tecnologías de adaptación al cambio climático, Municipio de Buesaco (Nariño, Colombia). Información Tecnológica, 34(3), 31–42. https://dx.doi.org/10.4067/S0718-07642023000300031

MacDicken, K. G. (1997). Guide to monitoring carbon storage in forestry and agroforestry projects. Winrock International Inst. for Agricultural Development. https://www.osti.gov/biblio/362203

Ontong, N., Poolsiri, R., Diloksumpun, S., Staporn, D., & Jenke, M. (2023). Effects of tree functional traits on soil respiration in tropical forest plantations. Forests, 14(4), Article 715. https://dx.doi.org/10.3390/f14040715

Organización de las Naciones Unidad para la Alimentación y la Agricultura. (2002). Captura de carbono en los suelos para un mejor manejo de la tierra (Informes sobre recursos mundiales de suelos 96). https://www.fao.org/3/bl001s/bl001s.pdf

Pinoargote, M., Cerda, R., Mercado, L., Aguilar, A., Barrios, M., & Somarriba, E. (2017). Carbon stocks, net cash flow and family benefits from four small coffee plantation types in Nicaragua. Trees and Livelihoods, 26(3), 183–198. https://doi.org/10.1080/14728028.2016.1268544

Poveda, V., Orozco, L., Medina, C., Cerda, R., & López, A. (2013). Almacenamiento de carbono en sistemas agroforestales de cacao en Waslala, Nicaragua. Agroforestería en las Américas, 49, 42–50.

Ramos-Prado, J., Romero-Hernández, E., Sánchez-Morales, P., Jiménez-García, D., & Hipólito-Romero, E. (2023). Dimensiones bioculturales y socioeconómicas de la sustentabilidad en sistemas agroforestales diversificados con cacao y vainilla. Revista Mexicana De Ciencias Agrícolas, 14(3), 401–412. https://doi.org/10.29312/remexca.v14i3.3093

R Core Team. (2023). R: A language and environment for statistical computing (R version 4.2.3). R Foundation for Statistical Computing. https://www.R-project.org/

Rodríguez, L., Suárez, J. C., Rodriguez, W., Artunduaga, K. J., & Lavelle, P. (2022). Agroforestry systems impact soil macroaggregation and enhance carbon storage in Colombian deforested Amazonia. Geoderma, 348(10), Article 114810. https://doi.org/10.1016/j.geoderma.2020.114810

Rousseau, G., Deheuvels, O., Celentano, D., Arias, I. R., Hernández-García, L. M., & Somarriba, E. (2021). Shade tree identity rather than diversity influences soil macrofauna in cacao-based agroforestry systems. Pedobiologia, 89, Article 150770. https://doi.org/10.1016/j.pedobi.2021.150770

Ruíz Murcia, F., Gutiérrez Valderrama, J. E., Dorado Delgado, J., Mendoza, J. E., Martínez Zuleta, C., Rojas Laserna, M., Hernández Gaona, D., & Rodríguez Salguero, M. (2015). Nuevos Escenarios de Cambio Climático para Colombia 2011-2100 (3a comunicación). Instituto de Hidrología, Meteorología y Estudios Ambientales, Programa de las Naciones Unidas para el Desarrollo, Ministerio de Medio Ambiente y Desarrollo Sostenible y Departamento Nacional de Planeación y Cancillería. https://www.andi.com.co/Uploads/NUEVOS%20ESCENARIOS%20DE%20CAMBIO%20CLIM%C3%81TICO%20COLOMBIA%202011%20-%202100.pdf

Siles, P., Harmand, J.-M., & Vaast, P. (2010). Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78, 269–286. https://doi.org/10.1007/s10457-009-9241-y

Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., Mavisoy, H., Ávila, G., Alvarado, E., Poveda, V., Astorga, C., Say, E., & Deheuvels, O. (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems and Environment, 173, 46–57. https://doi.org/10.1016/j.agee.2013.04.013

Somarriba, E., Saj, S., Orozco-Aguilar, L., Somarriba, A., & Rapidel, B. (2024). Shade canopy density variables in cocoa and coffee agroforestry systems. Agroforestry System, 98, 585–601. https://doi.org/10.1007/s10457-023-00931-2

Vega Orozco, G., Ordoñez Espinosa, C. M., Suarez Salazar, J. C., & López Pantoja, C. F. (2014). Almacenamiento de carbono en arreglos agroforestales asociados con café (Coffea arabica L.) en el sur de Colombia. Revista de Investigación Agraria y Ambiental, 5(1), 213–221. https://doi.org/10.22490/21456453.956

Villanueva, C., Ibrahim, M., & Castillo, C. (2023). Enteric methane emissions in dairy cows with different genetic groups in the humid tropics of Costa Rica. Animals, 13(4), Article 730. https://doi.org/10.3390/ani13040730

Xiang, Y., Li, Y., Luo, X., Liu, Y., Huang, P., Yao, B., Zhang, L., Li, W., Xue, J., Gao, H., Li, Y., & Zhang, W. (2022). Mixed plantations enhance more soil organic carbon stocks than monocultures across China: Implication for optimizing afforestation/reforestation strategies. Science of the Total Environment, 821, Article 153449. https://doi.org/10.1016/j.scitotenv.2022.153449

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.
Puede hallar permisos más allá de los concedidos con esta licencia en pccmca@gmail.com