Choosing new genotypes of rice based on the probability of overcoming the test-check.

Authors

  • Ismael Camargo-Buitrago Instituto de Investigación Agropecuaria de Panamá
  • Evelyn Itzel Quirós-McIntire Instituto de Investigación Agropecuaria de Panamá
  • Víctor Manuel Camargo-García Instituto de Investigación Agropecuaria de Panamá

DOI:

https://doi.org/10.15517/am.v25i1.14198

Keywords:

genotype by environment interaction, reliability or normalized response, phenotypic stability, rice breeding.

Abstract

The objective of this work was to validate a statistical methodology for estimating the reliability or normalized response (RNi) and stability of four elite rice genotypes, compared with the control IDIAP 145-05. We used the database from the rice breeding program IDIAP, from experiments conducted from 2009 to 2011, in 31 environments under dryland conditions. The results of the study allowed us to verify that new genotypes significantly exceeded (P<0.05) in grain yield the control used. The four genotypes IDIAP FL 106-11, 137-11 FL IDIAP, IDIAP FL 155 and FL 156 IDIAP had a reliability average of 0.79, 0.75, 0.75 and 0.74, respectively. The normalized probability IDIAP FL 106-11 represents a differential response greater than zero with respect to IDIAP 145-05, in 8 of 10 cases. It also confirmed the reliability is related to the stability parameters based on regression models (bi and S2di). The AMMI multivariate model, considering the PCA1, identified the genotype IDIAP FL 156, as the most stable. GGE Biplot model, based on the PCA2, found that the genotype IDIAP FL 155, had greater stability. The study illustrates that the reliability or standardized response may be useful for more precise recommendations for the use of new genotypes commercially.

Downloads

Download data is not yet available.

References

Becker, H.C. 1981. Correlations among some statistical

measures of phenotypic stability. Euphytica 30:835-840.

Camargo-Buitrago, I. 2009. Proyecto de investigación e innovación para el desarrollo de germoplasma mejorado de arroz para los sistemas de agricultura comercial y familiar. 2010-2012. IDIAP (Instituto de Investigación Agropecuaria de Panamá), Panamá.

Camargo, I., R. Gordón, J. Franco, A. González, E. Quirós,

y A. Figueroa. 2002. Confiabilidad de nuevos híbridos de maíz en Panamá. Agronomía Mesoamericana 13(1):07-11.

Camargo, I., R, Gordón, y M. Fuentes. 2003. Estabilidad

y confiabilidad de los nuevos híbridos de maíz en comparación al testigo regional HB-83. 1998-2000. Agronomía Mesoamericana 14(2):129-134.

Camargo, I., R, Gordón, y E, Quirós. 2011. Identificación de mega-ambientes para potenciar el uso de genotipos superiores de arroz en Panamá. Pesq. Agropec., Brasilia 46(9):1061-1069.

Cochran, W.G. 1950. The comparison of percentages in

matched samples. Biometrika 37:256-266.

Córdova, H.S., H.J. Barreto, y J. Crossa. 1993. Impacto del

desarrollo de híbridos de maíz en Centro América: confiabilidad de las ganancias en rendimiento sobre el genotipo H5 y consideraciones para selección de testigos regionales. Síntesis de resultados experimentales del PRM 4:3-10.

Córdova, H.S., S. Trifunovic, A. Ramírez, y M. Sierra. 2007.

CIMMYT maize hibrids for Latin America: Head to head analysis and probability of outperforming the best checks. Maydica 52:471-476.

Crossa, J., H.G. Gauch, Jr., y R.W. Zobel. 1990 Additive

main effects and multiplicative interaction analysis of two international maize cultivar trials. Crop. Sci. 30:493-500.

Crossa, J., P.N. Fox, W.H. Pfeiffer, S. Rajaram, y H.G.

Gauch, Jr. 1991. AMMI adjustment for statistical analysis of an international wheat yield trial. Theor. Appl. Genet. 81:27-37.

Eberhart, S.A., y W.A. Russell. 1966. Stability parameters

for comparing varieties. Crop Sci. 6:36-40.

Eskridge, K.M. 1996. Analysis of multiple environment trials

using the probability of outperforming a check. En: M.S. Kang, y H.G. Gauch, Jr., editores, Genotype by environment

interaction. CRC Press, NY, USA. p. 273-307.

Eskridge, K.M. 2003. Analysis of multiple environment

trials using the probability of outperforming a check. En: Course on Applied Statistics in Agriculture. 4 al 15 de agosto de 2003. CIMMYT, El Batan, Estado de México. México. 34 p.

Eskridge, K.M., y R.F. Mumm. 1992 Choosing plant cultivars based on the probability of outperforming a check. Theor. Appl. Genet. 84:494-500.

Eskridge, K.M., O.S. Smith, y P.F. Byrne. 1993. Comparing

test cultivars using reliability functions of test- check differences from on-farm trials. Theor. Appl. Genet. 87:60-64.

Finlay, K.W., y G.N. Wilkinson. 1963. The analysis of adaptation in a plant breeding programme. Aust. J. Agric. Res. 14:742-754.

Gauch, H.G., y R.W. Zobel. 1988. Predictive and postdictive

success of statistical analyses of yield trials. Theor Appl. Genet. 76:1-10.

Hodges, L., D. Sanders, K.B. Perry, K.M. Eskridge, y K.M.

Batal. 1995. Adaptability and reliability of yield for four bell pepper cultivars across three southeastern states. Hort. Sciences 30(6):1205-1210.

Jones, T.A. 1988. A probability method for comparing

varieties against checks. Crop Sci. 28:907-912.

Lin, C.S., y M.R. Binns. 1994. Concepts and methods for

analyzing regional trial data for cultivar and location selection. Plant Breeding Reviews 12:271-297.

Lin, C.S., M.R. Binns, y L.P. Lefkovitch. 1986. Stability

analysis: Where do we stand? Crop Sci. 26:894-900.

Puga, B. 2012. Programa nacional de granos básicos cultivo

de arroz mecanizado secano y riego. MIDA (Ministerio de Desarrollo Agropecuario). Informe final del año agrícola 2011-2012. Panamá.

Shukla, G.K. 1972. Some statistical aspects of partitioning

genotype environmental components of variability. Heredity 29:237-245.

Yan, W., y L.A. Hunt. 2002. Biplot analysis of multienvironment trial data. En: M.S. Kang, editor, Quantitative genetics, genomics and plant breeding. CAB International, Wallingford. p. 289-319.

Yan, W., L.A. Hunt, Q. Sheng, y Z. Szlavnics. 2000. Cultivar

evaluation and mega-environment investigation based on the GGE Biplot. Crop Sci. 40:597-605.

Yan, W., P. Cornelius, J. Crossa, y L.A. Hunt. 2001. Two types of GGE Biplots for analyzing multi environment trial data. Crop Sci. 41:656-663.

Yan, W., y M.S. Kang. 2003. GGE Biplot analysis: a graphical tool for breeders and agronomist. CRC Press, Boca Raton, Florida.

Zobel, R.W., J.W. Madison, y H.G. Gauch, Jr. 1988. Statistical

analysis of a yield trial. Agron. J. 80:388-393.

How to Cite

Camargo-Buitrago, I., Quirós-McIntire, E. I., & Camargo-García, V. M. (2014). Choosing new genotypes of rice based on the probability of overcoming the test-check. Agronomía Mesoamericana, 25(1), 63–71. https://doi.org/10.15517/am.v25i1.14198

Most read articles by the same author(s)