Genetic diversity in cattle of eight regions in Costa Rica.

Authors

  • Juan Miguel Cordero-Solórzano Ministerio de Agricultura y Ganadería, Servicio Nacional de Salud Animal (SENASA), Laboratorio Nacional de Servicios Veterinarios (LANASEVE), Laboratorio de Bioseguridad (LSE). Campus Lagunilla, Barreal de Heredia, Costa Rica.
  • Bernardo Vargas-Leitón Universidad Nacional de Costa Rica, Posgrado Regional en Ciencias Veterinarias, Tropicales. Campus Benjamín Núñez, Lagunilla Heredia.
  • Bernal León-Rodríguez Ministerio de Agricultura y Ganadería, Servicio Nacional de Salud Animal (SENASA), Laboratorio Nacional de Servicios Veterinarios (LANASEVE), Laboratorio de Bioseguridad (LSE).
  • Idania Chaón-González Ministerio de Agricultura y Ganadería, Servicio Nacional de Salud Animal (SENASA), Laboratorio Nacional de Servicios Veterinarios (LANASEVE), Laboratorio de Bioseguridad (LSE).
  • MArco Martínez-Pichardo Universidad Nacional de Costa Rica, Posgrado Regional en Ciencias Veterinarias, Tropicales. Campus Benjamín Núñez, Lagunilla Heredia.

DOI:

https://doi.org/10.15517/am.v26i2.19275

Keywords:

allelic frequencies, genetic distance, microsatellite marker.

Abstract

The aim of this study was to explore the extent of inter-regional genetic diversity present in the cattle of Costa Rica. 1498 DNA samples were collected (year 2013) from eight different regions within the country. Allelic frequencies and major population genetic parameters were determined for eighteen microsatellite markers. An analysis of molecular variance was also carried out and genetic distances were calculated between cattle from different regions. At the national level, a high allelic diversity was found, with an average of 14.6±1.01 observed alleles and 5.6+0.37 effective alleles per marker. Observed (Ho) and expected (He) heterozygosities were 0.76±0.01 and 0.81±01, respectively. Polymorphic Information Content (PIC) and Coefficient of Inbreeding (FIS) were 0.79±0.06 and 0.06±0.004, respectively. At the regional level, Ho ranged between 0.73±0.02 in the South Central region to 0.78±0.01 in the North Huetar region. The dendrogram showed three clearly distinct groups, Metropolitan Central and West Central regions in one group, Caribbean Huetar, South Central, Central Pacific and Chorotega regions in a second group; and North Huetar and Brunca regions in a third intermediate group. Estimates of genetic differentiation (RST) were significant between regions from different groups and non-significant for regions within the same group. Genetic differences between regions are related to differential proliferation of breed groups based on their adaptability to the agro-ecological conditions and production systems prevailing in each region.

Downloads

Download data is not yet available.

References

Aranguren-Méndez, J.A., R. Román-Bravo, W. Isea, Y. Villasmil, y J. Jordana. 2005. Los microsatélites (STR´s), marcadores moleculares de ADN por excelencia para programas de conservación: una revisión. Arch. Latinoam. Prod. Anim. 13:30-42.

Acosta, A.C., O. Uffo, A. Sanz, R. Ronda, R. Osta, C. Rodellar, I. Martin-Burriel, and P. Zaragoza. 2013. Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci. J. Anim. Breed. Genet. 130:79-86.

Budowle, B., P. Garofano, A. Hellman, M. Ketchum, S. Kanthaswamy, W. Parson, W. van Haeringen, S. Fain, and T. Broad. 2005. Recommendations for animal DNA forensic and identity testing. Int. J. Leg. Med. 119:295-302.

Cañón, J., I. Tupac-Yupanqui, M.A. García-Atance, O. Cortés, D. García, J. Fernández, and S. Dunner. 2008. Genetic variation within the Lidia bovine breed. Anim. Genet. 39:439-445.

CORFOGA (Corporación Ganadera). 2000. Análisis del censo ganadero-2000. http://corfoga.org/2012/wp-content/ uploads/2012/09/censo.pdf (consultado 10 ene. 2014).

Curi, R.A., and C.R. Lopes. 2002. Evaluation of nine microsatellite loci and misidentification paternity frequency in a population of Gyr breed bovines. Braz. J. Vet. Res. Anim. Sci. 39:129-135.

Egito, A.A., S.R. Paiva, M.S. Albuquerque, A. Mariante, L. D´Almeida, S.R. Castro, and D. Grattapaglia. 2007. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genet. 8:83.

Excoffier, L., P. Smouse, and J. Quattro. 1992. Analysis of molecular variance for metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479-491.

FAO (Food and Agriculture Organization of the United Nations). 2010. La situación de los recursos zoogenéticos mundiales para la alimentación y la agricultura. http://www.fao.org/docrep/012/a1250s/a1250s.pdf (consultado 15 nov. 2014).

FAO (Food and Agriculture Organization of the United Nations). 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines 9. Rome, ITA.

Faul, F., E. Erdfelder, A.G. Lang, and A. Buchner. 2007. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. 39:175-191.

Felmer, R., R. Chávez, A. Catrileo, y C. Rojas. 2006. Tecnologías actuales y emergentes para la identificación animal y su aplicación en la trazabilidad animal. Instituto de Investigaciones Agropecuarias. Ach. Med. Vet. 3:197-206.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evol. 39:783-791.

Fernández-Monge, M. 2007. Determinación de las frecuencias alélicas de 11 marcadores microsatélites en dos razas de ganado lechero en Costa Rica. Tesis Bach. Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, CRC.

Kalinowski, S.T., M.L. Taper, and T.C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16:1099-1006.

Lara, M.A.C., E.P.B. Contel, y J.R.B. Sereno. 2005. Caracterización genética de poblaciones cebuínas a través de marcadores moleculares. Arch. Zootec. 54:295-303.

Martín-Burriel, I., C. Rodellar, J. Cañón, O. Cortés, S. Dunner, V. Landi, A. Martínez-Martínez, L.T. Gama, C. Ginja, M.C.T. Penedo, A. Sanz, P. Zaragoza, and J.V. Delgado. 2011. Genetic diversity, structure, and breed relationships in Iberian cattle. J. Anim. Sci. 89: 893-906.

Maudet, C., G. Luikart, and P. Taberlet. 2002. Genetic diversity and assignment tests among seven French cattle breeds based on microsatellite DNA analysis. J. Anim. Sci. 80:942-950.

Navarrete-Barquero, D. 2005. Determinación de las frecuencias alélicas de 11 marcadores microsatélites en el ganado bovino de engorde de Costa Rica. Tesis Bach. Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, CRC.

Nei, M. 1972. Genetic distance between populations. Am. Nat. 106:283-292.

Peakall, R., and P.E. Smouse. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. 6:288-295.

Peakall, R., and P.E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28:2537-2539.

Pizarro, M.G., F. Mujica, y R. Felmer. 2009. Estructura poblacional y diversidad genética de rebaños bovinos de carne del sur de Chile. Agro Sur 37:60-83.

Quirós, E. 2006. Historia de la ganadería en Costa Rica. http://www.corfoga.org/images/public/documentos/pdf/Historia_Ganaderia_bovina.pdf (consultado 10 ene. 2014).

Rousset, F. 2008. Genepop’007: a complete reimplementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8:103-106.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.

Slatkin, M.A. 1995. Measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457-462.

Steigleder, C.S., E.A. Almeida, and T.A. Weimert. 2004. Genetic diversity of a brazilian creole cattle based on fourteen microsatellite loci. Arch. Zootec. 53:3-11.

Takezaki, N., M. Nei, and K. Tamura. 2010. POPTREE2: Software for constructing population trees from allele frequency data and computing other population statistics with Windows interface, Mol. Biol. Evol. 27:747-752.

Villalobos-Cortés, A.I., A.M. Martínez, J.L. Vega-Pla, y J.V. Delgado. 2011. Estructura genética y cuello de botella de la población bovina guaymí mediante microsatélites. Arch. Zootec. 60:767-775.

Wright, S. 1950. Genetical structure of populations. Nature

:247-249.

Yañez-Kemke, M.A. 1995. Uso de marcadores moleculares RAPDs (Random amplified polimorphic DNA) en ganado bovino adaptado a condiciones de trópico húmedo. Tesis Mag. Sc. Centro Agronómico Tropical para la Investigación y Enseñanza (CATIE), Turrialba, CRC.

Zajc, I., and J. Sampson. 1999. Utility of canine micro satellites in revealing the relationships of pure bred dogs. J. Hered. 90:104-107.

Published

2015-06-16

How to Cite

Cordero-Solórzano, J. M., Vargas-Leitón, B., León-Rodríguez, B., Chaón-González, I., & Martínez-Pichardo, M. (2015). Genetic diversity in cattle of eight regions in Costa Rica. Agronomía Mesoamericana, 26(2), 191–202. https://doi.org/10.15517/am.v26i2.19275

Most read articles by the same author(s)