Crop physiological responses to high temperature stress. II. Tolerance and agronomic treatment.
DOI:
https://doi.org/10.15517/am.v28i1.21904Keywords:
agronomy response, environmental engineering, crop microclimate.Abstract
The objective of this review was to describe plant responses and tolerance mechanisms to thermal stress, as well as the use of agronomic practices to mitigate the effects of high temperature stress on crops. The energy balance of leaves and canopies is presented as a link between plant and air temperature. The effects of high temperatures on water relations, photosynthesis and assimilate partitioning, and the morphological and phenological responses of some crops are described. Response agronomy is presented as a means for the prevention and remediation of thermal stress, which is approached form the perspective of plant breeding, agronomic management, and several pharmaceutical and horticultural practices. Some agronomic practices utilized to reduce the negative effects of high temperature stress on crops are described, such as the use of ground covers, natural or artificial shade, and the application of growth regulators, plant protectants and other products of the modern pharmaceutical industry.
Downloads
References
Abdul, A.A., and J.R. Stommel. 1995. Pollen viability and fruit set of tomato genotypes under optimum- and high-temperature regimes. HortSci. 30:115-117.
Adams, S.R., K.E. Cockshull, and C.R.J. Cave. 2001. Effect of temperature on the growth and development of tomato fruits. Ann. Bot. 88:869-877.
Ainsworth, E.A., and D.R. Ort. 2010. How do we improve crop production in a warming world? Plant Physiol. 154:526-530.
Allan, P., J. McChlery, and D. Biggs. 1987. Environmental effects on clonal female and male Carica papaya L. plants. Sci. Hortic. 32:221-232.
Almeselmani, M., P.S. Deshmukh, R.K. Sairam, S.R. Kushwaha, and T.P. Singh. 2006. Protective role of antioxidant enzymes under high temperature stress. Plant Sci. 171:382-388.
Alves, A.A.C. 2002. Cassava botany and physiology. In: R.J. Hillocks et al., editors, Cassava: biology, production and utilization. CAB Int., Wallingford, GBR. p. 67-89.
Atkin, O.K., E.J. Edwards, and B.R. Loveys. 2000. Research of root respiration to changes in temperature and its relevance to global warming. New Phythol. 147:141-154.
Aylor, D.E., and G.S. Taylor. 1982. Aerial dispersal and drying of Peronospora tabacina conidia in tobacco shade tents. PNAS 79:697-700.
Barnabás, B., K. Jäger, and A. Fehér. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31:11-38.
Beebe, S.E., I.M. Rao, M.W. Blair, and J.A. Acosta. 2013. Phenotyping common beans for adaptation to drought. Front. Physiol. 4:35. doi:10.3389/fphys.2013.00035.
Beebe, S., I. Rao, M.W. Blair, and L. Butare. 2009. Breeding for abiotic stress tolerance in common bean: present and future challenges. Paper presented at: the 14th Australian plant breeding & 11th Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO) Conference, 10–14 aug. 2009. Brisbane, AUS.
Benning, C. 2009. Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol. 25:71-79.
Bhatnagar, P., V. Vadez, and K.K. Sharma. 2008. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep. 27:411-424.
Bouzo, C.A., J.C. Favaro, and R.A. Pilatti. 2007. Improving the germination of celery seeds at high temperature. J. Agric. Soc. Sci. 3:67-69.
Campostrini, E., and D.M. Glenn. 2007. Ecophysiology of papaya: a review. Braz. J. Plant Physiol. 19:413-424.
Cheikh, N., and R.J. Jones. 1994. Disruption of maize kernel growth and development by heat stress. Role of cytokinin/abscisic acid balance. Plant Physiol. 106:45-51.
Chen, J.J., Y.W. Sun, and T.F. Sheen. 1999. Use of cold water for irrigation reduces stem elongation of plug-grown tomato and cabbage seedlings. HortSci. 34:852-854.
Clark, D.A., S.C. Piper, C.D. Keeling, and D.B. Clark. 2003. Tropical rain forest three growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. PNAS 100:5852-5857.
Corley, R.H.V. 1983. Potential productivity of tropical perennial crops. Exp. Agr. 19:217-237.
Da Matta, F.M., and J.D. Ramalho. 2006. Impacts of drought and temperature stress on coffee physiology and production: a review. Braz. J. Plant Physiol. 18:55-81.
Deal, D.L., and J.C. Raulston. 1989. Plant high night temperature tolerance zones: describing and predicting summer night temperature patterns and the southern limits of plant adaptation. Agric. For. Meteorol. 46:211-226.
Ebrahim, M.K., O. Zingsheim, M.N. El-Shourbagy, P.H. Moore, and E. Komor. 1998. Growth and sugar storage in sugarcane grown at temperature below and above optimum. J. Plant Physiol. 153:593-602.
Egri, A., A. Horváth, G. Kriska, and G. Horváth. 2010. Optics of sunlit water drops on leaves: conditions under which sunburn is possible. New Phytol. 185:979-987.
Erickson, A.N., and A.H. Markhart. 2002. Flower developmental stage and organ sensitivity of bell pepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 25:123-130.
Falcone, D.L., J.P. Ogas, and C.R. Somerville. 2004. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 4:17. doi:10.1186/1471-2229-4-17
Firon, N., E. Pressman, S. Meir, R. Khoury, and L. Althan. 2012. Ethylene is involved in maintaining tomato (Solanum lycopersicum) pollen quality under heat-stress conditions. AoB Plants 2012:pls024. doi:10.1093/aobpla/pls024.
Fischer, G., F. Casierra, y W. Piedrahíta. 2009. Eco siología de las especies pasi oráceas en Colombia. En: D. Miranda et al., editores, Cultivo, poscosecha y comercialización de las pasi oráceas en Colombia: maracuyá, granadilla, gulupa y curuba. Sociedad Colombiana de Ciencias Hortícolas, COL. p. 45-68.
Fu, Q.A., and J.R. Ehleringer. 1989. Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol. 91:1162-1167.
Gong, M., S.N. Chen, Y.Q. Song, and Z.G. Li. 1997. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Aust. J. Plant Physiol. 24:371-379.
Gutiérrez, M.V., K. Jiménez, D. Soto, M. Alpízar, y C. Chinchilla. 1999-2002. El microclima en una casa de sombra: palmas y Zamia como indicadores de aclimatación a la luz. Rev. Agr. Trop. 32:47-60.
González, M., R. Castro, R. Morejón, y R.M. Cárdenas. 2004. Relación del vaneo del grano en variedades de arroz (Oryza sativa L.) con las variables climáticas temperatura y humedad relativa. Cultivos Trop. 25(3):15-17.
Higuchi, H., N. Utsunomiya, and T. Sakuratani. 1998. High temperature effects on cherimoya fruit set, growth and development under greenhouse conditions. Sci. Hort. 77:23-31.
Howden, S.M., J.F. Soussana, F.N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke. 2007. Adapting agriculture to climate change. PNAS 104:19691-19696.
Hu, H., and L. Xiong. 2013. Genetic engineering and breeding of drought-resistant crops. Annu. Rev. Plant Biol. 35:14-34.
Huberman, M., J. Riov, B. Aloni, and R. Goren. 1997. Role of ethylene biosynthesis and auxin content and transport in high temperature-induced abscission of pepper reproductive organs. J. Plant Growth Regul. 16:129-135.
Iba, K. 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53:225-245.
Kell, D.B. 2011. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 108:407-418.
Koltunow, A.M., and U. Grossniklaus. 2003. Apomixis: a developmental perspective. Annu. Rev. Plant Biol. 54:547-574.
Kurek, I., T.K. Chang, S.M. Bertain, A. Madrigal, L. Liu, M.W. Lassner, and G. Zhu. 2007. Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230-3241.
Larkindale, J., and B. Huang. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat acclimated creeping bentgrass (Agrostis stolonifera). Environ. Exp. Bot. 51:57-67.
Laspina, N.V., T. Vega, J.G. Seijo, A.M. González, L.G. Martelotto, J. Stein, M. Podio, J.P. Ortiz, V.C. Echenique, C.L. Quarin, and S.C. Pessino. 2008. Gene expression analysis at the onset of aposporous apomixis in Paspalum notatum. Plant Mol. Biol. 67:615-628.
Ledesma, N., and N. Sugiyama. 2005. Pollen quality and performance in strawberry plants exposed to high- temperature stress. J. Amer. Soc. Hort. Sci. 130:341-347.
Ledesma, N.A., M. Nakata, and N. Sugiyama. 2008. Effect of high temperature stress on the reproductive growth of strawberry cvs. Nyoho and Toyonoka. Sci. Hort. 116:186-193.
Liu, N., S. Ko, K.C. Yeh, and Y. Charng. 2006. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci. 170:976-985.
Long, S.P., E.A. Ainsworth, A. Rogers, and D.R. Ort. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55:591-628.
Micheletto, S., L. Rodriguez, R. Hernandez, R.D. Richins, J. Curry, and M.A. O’Connell. 2007. Comparative transcript pro ling in roots of Phaseolus acutifolius and P. vulgaris under water deficit stress. Plant Sci. 173:510-520.
Mittler, R. 2002. Oxidative stress; antioxidants and stress tolerance. Trends Plant Sci. 7:405-410.
Mohammed, A.R., and L. Tarpley. 2009. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric. For. Meteorol. 149:999-1008.
Mohammed, A.R., and L. Tarpley. 2011. High night temperature and plant growth regulator effects on spikelet sterility, grain characteristics and yield of rice (Oryza sativa L.) plants. Can. J. Plant Sci. 91:283-291.
Momcilovic, I., and Z. Ristic, 2007. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development. J. Plant Physiol. 164:90-99.
Monterroso, V.A., and H.C. Wien. 1990. Flower and pod abcission due to heat stress in beans. J. Amer. Soc. Hort. Sci. 115:631-634.
Morales, D., P. Rodríguez, J. Dell’amico, E. Nicolas, A. Torrecillas, and M.J. Sánchez. 2003. High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato. Biol. Plant. 47:203-208.
Muñoz, L.C., M.W. Blair, M.C. Duque, J. Thome, and W. Roca. 2004. Introgression in common bean x tepary bean interspecific congruity-backcross lines as measured by AFLP markers. Crop Sci. 44:637-645.
Nagesh, R., and V.R. Devaraj. 2008. High temperature and salt stress response in French bean (Phaseolus vulgaris). Aust. J. Crop Sci. 2(2):40-48.
Nakasone, H.Y., and R.E. Paull. 2004. Tropical fruits. 2nd ed. CAB Int., Wallimngford, GBR.
Omae, H., A. Kumar, and M. Shono. 2012. Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J. Bot. Article ID 803413. doi:10.1155/2012/803413.
Peet, M.M., S. Sato, and R.G. Gardner. 1998. Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 21:225-231.
Pessino, S.C., J.P.A. Ortiz, O. Leblanc, C.B. Do Valle, C. Evans, and M.D. Hayward. 1997. Identi cation of a maize linkage group related to apomixis in Brachiaria. Theor. Appl. Gen. 94:439-444.
Porch, T.G., and A.E. Hall. 2013. Heat tolerance. In: C. Kole, editor, Genomics and breeding for climate-resilient crops. Vol. 2. Springer-Verlag, Berlin, GER. p. 167-202.
Porch, T.G., and M. Jahn. 2001. Effects of high- temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24:723-731.
Prasad, P.V., P.Q. Craufurd, and R.J. Summer eld. 2000.
Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant Soil 222:231-239.
Prasad, P.V., K.J. Boote, L.H. Allen Jr., and J.M. Thomas. 2002. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Glob. Change Biol. 8:710-721.
Prasad, P.V., K.J. Boote, L.H. Allen Jr., J.E. Sheehy, and J.M. Thomas. 2006. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res. 95:398-411.
Pregitzer, K.S., J.S. King, A.J. Burton, and S.E. Brown. 2000. Responses of tree fine roots to temperature. New Phytol. 147:105-115.
Qiu, N., and C. Lu. 2003. Enhanced tolerance of photosynthesis against high temperature damage in salt- adapted halophyte Atriplex centralasiatica plants. Plant Cell Environ. 26:1137-1145.
Radin, B., B.B. Lisboa, S. Witter, V. Barni, C. Reisser, R. Mat- zenauer, e M.H. Fermino. 2011. Desempenho de quatro cultivares de morangueiro em duas regiões ecoclimáticas do Rio Grande do Sul. Hortic. Bras. 29:287-291.
Rainey, K.M., and P.D. Grif ths. 2005. Differential response of common bean genotypes to high temperature. J. Amer. Soc. Hort. Sci. 130:18-23.
Rasheed, R., A. Wahid, M. Farooq, I. Hussain, and S.M.A. Basra. 2011. Role of proline and glycinebetaine pretreatments in improving heat tolerance of sprouting sugarcane (Saccharum sp.) buds. Plant Growth Regul. 65:35-45.
Rincón, J.A., S. Castro, J.A. López, A.J. Huerta, C. Trejo, y F. Briones. 2006. Temperatura alta y estrés hídrico durante la oración en poblaciones de maíz tropical. Phyton (Buenos Aires) 75:31-40.
Rosenberg, N.J., B.L. Blad, and S.B. Verma. 1983. Microclimate: the biological environment. 2nd ed. John Wiley & Sons, N.Y., USA.
Roxas, V.P., R.K. Smith, E.R. Allen, and R.D. Allen. 1997. Overexpression of glutathione S-transferase/ glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat. Biotechnol. 15:988-991.
Schwacke, R., S. Grallath, K.E. Breitkreuz, E. Stransky, H. Stransky, W.B Frommer, and D. Rentscha. 1999. LeProT1, a transporter for proline, glycine betaine, and g-amino butyric acid in tomato pollen. Plant Cell 11:377-391.
Siebenmorgen, T.J., B.C. Grigg, and S.B. Lanning. 2013. Impacts of preharvest factors during kernel development on rice quality and functionality. Annu. Rev. Food Sci. Technol. 4:101-15.
Snyman, M., and M.J. Cronjé. 2008. Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings. J. Exp. Bot. 59:2125-2132.
Spillane, C., M.D. Curtis, and U. Grossniklaus. 2004. Apomixis technology development - virgin births in farmers’ elds? Nat. Biotechnol. 22:687-691.
Stoger, E., R. Fischer, M. Moloney, and J.K.C. Ma. 2014. Plant molecular pharming for the treatment of chronic and infectious diseases. Annu. Rev. Plant Biol. 65:743-768.
Su, K., D.J. Bremer, R. Jeannotte, R. Welti, and C. Yang. 2009. Membrane lipid composition and heat tolerance in cool-season turf grasses, including a hybrid bluegrass. J. Amer. Soc. Hort. Sci. 134:511-520.
Sun, A., S. Yi, J. Yang, C. Zhao, and J. Liu. 2006. Identi cation and characterization of a heat-inducible ftsH gene from tomato (Lycopersicon esculentum Mill.). Plant Sci. 170:551–562.
Suzuki, K., T. Tsukaguchi, H. Takeda, and Y. Egawa. 2001. Decrease of pollen stainability of green bean at high temperatures and relationship to heat tolerance. J. Amer. Soc. Hort. Sci. 126:571-574.
Taiz, L., and E. Zeiger. 2006. Plant physiology. 4th ed. Sinauer Associates Inc., Sunderland, MA, USA.
Upchurch, R.G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol. Lett. 30:967-977.
Vallejo, F.A., y E.I. Estrada. 2002. Mejoramiento Genético de Plantas. Universidad Nacional de Colombia Sede Palmira, Cali, COL.
Vallejo, F.A., y E.I. Estrada. 2004. Producción de hortalizas de clima cálido. Universidad Nacional de Colombia Sede Palmira, Cali, COL.
Vierling, E. 1991. The role of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:579-620.
Wahid, A. 2007. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum of cinarum) sprouts. J. Plant Res.120:219-228.
Wahid, A., and T.J. Close. 2007. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51:104-109.
Wahid, A., S. Gelani, M. Ahsraf, and M.R. Fooland. 2007. Heat tolerance in plants: an overview. Environ. Exp. Bot. 61:199-223.
Wallace, D.H., P.A. Gniffke, P.N. Masaya, and R.W. Zobel. 1991. Photoperiod, temperature, and genotype interaction effects on days and nodes required for owering of bean. J. Amer. Soc. Hort. Sci. 116:534-543.
Wang, S.Y., and M.J. Camp. 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hort. 85:183-199.
Wang, W., B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244-252.
Waraich, E.A., R. Ahmad, A. Halim, and T. Aziz. 2012. Alleviation of temperature stress by nutrient management in crop plants: a review. J. Soil Sci. Plant Nutr. 12:221-244.
Wentworth, M., E.H. Murchie, J.E. Gray, D. Villegas, C. Pastenes, M. Pinto, and P. Horton. 2006. Differential adaptation of two varieties of common bean to abiotic stress. II. Acclimation of photosynthesis. J. Exp. Bot. 57:699-709.
Wierenga, P.J., and R.M. Hagan. 1966. Effects of cold water irrigation on soil temperature and crop growth. Calif. Agric. 20:14-16.
Yang, X., Z. Liang, and C. Lu. 2005. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol. 138:2299-2309.
Yarwood, C.E. 1976. Modi cation of the host response – Predisposition. In: R. Heitefuss, and P.H. Williams, editors, Physiological plant pathology. Encyclopedia of Plant Physiology. Vol. 4, Springer-Verlag, Berlin, GER. p. 703-718.
Zhu, B., J. Su, M. Chang, D.P.S. Verma, Y.L. Fan, and R. Wu. 1998. Overexpression of delta1-pyrroline-5-carboxylate synthase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci. 199:41-48.
Zinn, K.E., M. Tunc, and J.F. Harper. 2010. Temperature stress and plant sexual reproduction: uncovering the weakest links. J. Exp. Bot. 61:1959-1968.
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).