Ruminal degradability of alfalfa in the Costa Rica’s Central Valley, Eastern zone


  • Carlos Boschini Figueroa Universidad de Costa Rica
  • Pablo Chacon-Hernandez Universidad de Costa Rica



Medicago sativa, ruminant nutrition, in situ degradability.


The objective of this work was to evaluate in dairy cows, the potential of ruminal degradability of four alfalfa (Medicago sativa) varieties developed in Argentina. The research was carried out in the Alfredo Volio Mata Experimental Station, located in the province of Cartago, Costa Rica; the area has a mean temperature of 17.9°C; a height of 1542 masl, and 1465.9 mm of rain evenly distributed between the months of May and November. Sampling was performed during 2014’s rainy season with ground level harvest of alfalfa, with samples of the varieties of Mora, Patricia, Victoria and Super Monarca, with harvest age of 28, 35, 42, 49, 56 and 63 days; all samples were dried, minced and incubated by duplicate on two Jersey-Reyna ruminally fistulated cows, for 0, 3, 6, 12, 24 and 48 hours. The results were analyzed through the Marquardt algorithm with the SAS software. Statical differences were only found between soluble fraction and degradation rate (p<0.05) according to harvest ages, with values of soluble, potentially degradable and degradation rate of 35.34%-44.65%, 36.46%-39.96% and 0.0734/h-0.1176/h, respectively. Likewise, effective degradability percentages of 59.06%-67.09%, with passage rates of 6%/h, according to harvest ages were obtained. Given the obtained results, the analyzed varieties of M. sativa showed a digestible forage, which could be used for the feeding of highly production animals.


Download data is not yet available.


Andrighetto, I., L. Bailoni, G. Cozzi, H.F. Tolosa, B. Hartman, M. Hinds, and D. Sapienza. 1993. Observations on in situ degradation of forage cell components in Alfalfa and Italian Ryegrass. J. Dairy Sci. 76:2624-2631.

Balde, A.T., J.H. Vandersall, R.A. Erdman, J.B. Reeves-III, and B.P. Glenn. 1993. Effect of stage of maturity of alfalfa and orchardgrass on in situ dry matter and crude protein degradability and amino acid composition. Anim. Feed Sci. Technol. 44:29-43.

Blache, D., S.K. Maloney, and D.K. Revell. 2008. Use and limitations of alternative feed resources to sustain and improve reproductive performance in sheep and goats. Anim. Feed Sci. Technol. 147:140-157.

Boschini, C. 2001. Degradabilidad in situ de la materia seca, proteína y fibra del forraje de morera (Morus alba). Agron. Mesoam. 12:79-87.

Boschini, C., y A.L. Amador. 2001. Degradabilidad ruminal de la planta de sorgo negro forrajero (Sorghum almum) en diferentes etapas de crecimiento. Agron. Mesoam. 12:169-174.

Broderick, G.A., and D.R. Buxton. 1991. Genetic variation in alfalfa for ruminal protein degradability. Can. J. Anim. Sci. 71:755-760.

Canbolat, O., A. Kamalak, C.O. Ozkan, A. Erol, M. Sahin, E. Karakas, and E. Ozkose. 2006. Prediction of relative feed value of alfalfa hays harvested at different maturity stages using in vitro gas production. Liv. Res. Rural Dev. 18:1-8.

Cao, B.B., R. Wang, Y.K. Bo, S. Bai, and H.J. Yang. 2016. In situ rumen digestibility of ester-linked ferulic and p-coumaric acids in crop stover or straws in comparison with alfalfa and Chinese wild ryegrass. Anim. Feed Sci. Technol. 212:27-34.

Coblentz, W.K., J.O. Fritz, W.H. Fick, R.C. Cochran, and J.E. Shirley. 1998. In situ dry matter, nitrogen, and fiber degradation of alfalfa, red clover, and eastern gamagrass at four maturities. J. Dairy Sci. 81:150-161.

Coblentz, W.K., and P.C. Hoffman. 2009. Effects of bale moisture and bale diameter on spontaneous heating, dry matter recovery, in vitro true digestibility, and in situ disappearance kinetics of alfalfa-orchardgrass hays. J. Dairy Sci. 92:2853-2874.

CSIRO (Commonwealth Scientific and Industrial Research Organisation). 2007. Nutrient requirements of domesticated ruminants. CSIRO Publishing, AUS.

Chacón-Hernández, P., y C. Boschini-Figueroa. 2016. Crecimiento del ganado caprino en una finca del Valle Central de Costa Rica. Agron. Mesoam. 27:159-165.

Foster, J.L., J.P. Muir, B.D. Lambert, and D. Pawelek. 2007. In situ and in vitro degradation of native Texas warm-season legumes and alfalfa in goats and steers fed a sorghum-sudan basal diet. Anim. Feed Sci. Technol. 133:228-239.

Hassanat, F., R. Gervais, C. Julien, D.I. Massé, A. Lettat, P.Y. Chouinard, H.V. Petit, and C. Benchaar. 2013. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 96:4553-4567.

Jung, H.G., and F.M. Engels. 2001. Alfalfa stem tissues: rate and extent of cell-wall thinning during ruminal degradation. Neth. J. Agric. Sci. 49:3-13.

Kabi, F., and F.B. Bareeba. 2008. Herbage biomass production and nutritive value of mulberry (Morus alba) and Calliandra calothyrsus harvested at different cutting frequencies. Anim. Feed Sci. Technol. 140:178-190.

Martín, G.J., Y. Noda, G. Pentón, D.E. García, F. García, E. González, F. Ojeda, M. Milera, O. López, J. Ly, L. Leiva, and J. Arece. 2007. La morera (Morua alba, Linn.): una especie de interés para la alimentación animal. Pastos y Forrajes 30:1-12.

NRC (National Research Council). 2001. Nutrient requirements of dairy cattle. 7th ed. National Academy Press, WA, USA.

Naranjo, J.F., y C. Cuartas. 2011. Caracterización nutricional y de la cinética de degradación ruminal de algunos de los recursos forrajeros con potencial para la suplementación de rumiantes en el trópico alto de Colombia. Rev. CES Med. Vet. Zootec. 6(1):9-19.

Ørskov, E.R., and I. McDonald. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. (Camb.) 92:499-503.

SAS. 2011. SAS/STAT® 9.3 User’s guide. SAS Institute Inc, Cary, NC. USA.

Steel, R., y J. Torrie. 1988. Bioestadística: principios y procedimientos. McGraw Hill, México DF, MEX.

Tremblay, G.F., G. Bélanger, K.B. McRae, and R. Michaud. 2002. Leaf and stem dry matter digestibility and ruminal undegradable proteins of alfalfa cultivars. Can. J. Anim. Sci. 82:383-393.

Trujillo, A.I., M.D. Marichal, and M. Carriquiry. 2010. Comparison of dry matter and neutral detergent fibre degradation of fibrous feedstuffs as determined with in situ and in vitro gravimetric procedures. Anim. Feed Sci. Technol. 161:49-57.

Vargas, C.F. 2005. Valoración de parámetros nutricionales y degradabilidad ruminal de 15 ecotipos de sorgo forrajero (Sorghum sp.). Agron. Mesoam. 16:215-223.

Vásquez, A. 1982. Estudio detallado de los suelos de la Estación Experimental de Ganado Lechero El Alto. Universidad de Costa Rica, San José, CRC.

Yari, M., R. Valizadeh, A.A. Naserian, G.R. Ghorbani, and P.R. Moghaddam. 2012a. Botanical traits, protein and carbohydrate fractions, ruminal degradability and energy contents of alfalfa hay harvested at three stages of maturity and in the afternoon and morning. Anim. Feed Sci. Technol. 172:162-170.

Yari, M., R. Valizadeh, A.A. Naserian, A. Jonker, and P. Yu. 2012b. Modeling nutrient availability of alfalfa hay harvested at three stages of maturity and in the afternoon and morning in dairy cows. Anim. Feed Sci. Technol. 178:12-19.

Yu, P., D.A. Christensen, and J.J. McKinnon. 2004. In situ rumen degradation kinetics of timothy and alfalfa as affected by cultivar and stage of maturity. Can. J. Anim. Sci. 84:255-263.



How to Cite

Boschini Figueroa, C., & Chacon-Hernandez, P. (2017). Ruminal degradability of alfalfa in the Costa Rica’s Central Valley, Eastern zone. Agronomía Mesoamericana, 28(3), 657–666.