Stomatal characterization, chlorophyll concentration and their relation with biomass production of Bouteloua curtipendula

Authors

  • Alan Álvarez-Holguín Universidad Autónoma de Chihuahua
  • Carlos Raúl Morales-Nieto Universidad Autónoma de Chihuahua
  • Raúl Corrales-Lerma Universidad Autónoma de Chihuahua
  • Carlos Hugo Avendaño-Arrazate Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP).
  • Héctor Oswaldo Rubio-Arias Universidad Autónoma de Chihuahua
  • Federico Villarreal-Guerrero Universidad Autónoma de Chihuahua

DOI:

https://doi.org/10.15517/ma.v29i2.29900

Keywords:

stomata, trichomes, crop yield, forage.

Abstract

The stomatal characteristics and chlorophyll concentration are some of the main parameters, to determine plant productivity. The objective of the present study was to characterize the stomatal density and distribution to estimate the chlorophyll concentration and evaluate their effect on the biomass production of sideoatsgrama[Bouteloua curtipendula (Michx.) Torr.] genotypes. The experiment was performed from May to July 2015 under greenhouse conditions, at- the School of Animal Sciences and Ecology of the Autonomous University of Chihuahua, Mexico. Three commercial varieties were studied: El Reno, Niner, Vaughn and two native genotypes: E-689 and E-592 of side-oats grama. The variables evaluated were chlorophyll concentration index (CCI), stomatal density (SD), trichome density (TD), stomatal index (SI), and stomatal area (SA). These variables were related to biomass production (BP) applying regression analysis. SD and SI showed a negative effect on BP, while SA and CCI showed a positive effect. The genotype E-689 showed the lowest (p<0.05) SD and SI, with values from 152.7 to 275 stomatal/μm2 and from 13.41 to 16.03%, respectively. In addition, it also presented the highest (p<0.05) SA and BP, with values from 186.7 to 361.7 μm2 and 13.5 to 30.3 g, respectively. In conclusion, genotypes of side-oats grama with lower stomatal density and stomatal index and higher stomatal area and chlorophyll concentration index could produce higher amounts of biomass.

Downloads

Download data is not yet available.

Author Biography

Carlos Raúl Morales-Nieto, Universidad Autónoma de Chihuahua

Profesor investigador en la Facultad de Zootecnia y Ecología. Departamento de Manejo de Recursos Naturales.

References

Beaulieu, J.M., I.J. Leitch, S. Patel, A. Pendharkar, and C.A. Knight. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol. 179:975-986. doi:10.1111/j.1469-8137.2008.02528.x

Beltrán, S., C.A. García, J.A. Hernández, C. Loredo, J. Urrutia, L.A. González, y H.G. Gámez. 2013. “Banderilla Diana” Bouteloua curtipendula (Michx.) Torr., nueva variedad de pasto para zonas áridas y semiáridas. Rev. Mex. Cienc. Pecu. 4:217-221.

Croxdale, J.L. 2000. Stomatal patterning in angiosperms. Am. J. Bot. 87:1069-1080. doi:10.2307/2656643

Daughtry, C.S.T., C.L. Walthall, M.S. Kim, E. Brown-de-Colstoun, and J.E. McMurtrey. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 74:229-239. doi:10.1016/S0034-4257(00)00113-9

Drake, P.L., R.H. Froend, and P.J. Franks. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64:495-505. doi:10.1093/jxb/ers347

Duke, S.O. 1994. Glandular trichomes-A focal point of chemical and structural interactions. Int. J. Plant Sci. 155:617-620.

Fanourakis, D., H. Giday, R. Milla, R. Pieruschka, K.H. Kjaer, M. Bolger, A. Vasilevski, A. Nunes-Nesi, F. Fiorani, and C.O. Ottosen. 2015. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides. Ann. Bot. 115:555-565. doi:10.1093/aob/mcu247

Franks, P.J., and D.J. Beerling. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343-10347. doi:10.1073/pnas.0904209106

Franks, P.J., T.W. Doheny-Adams, Z.J. Britton-Harper, and J.E. Gray. 2015. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol. 207:188-195. doi:10.1111/nph.13347

Fraser, L.H., A. Greenall, C. Carlyle, R. Turkington, and C.R. Friedman. 2009. Adaptive phenotypic plasticity of Pseudoroegneria spicata: Response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Ann. Bot. 103:769-775. doi:10.1093/aob/mcn252

Ghasemi, M., K. Arzani, A. Yadollahi, S. Ghasemi, and S. Sarikhani. 2011. Estimate of leaf chlorophyll and nitrogen content in asian pear (Pyrus serotina Rehd.) by CCM-200. Not. Sci. Biol. 3:91-94. doi:10.15835/nsb315623

Giday, H., K.H. Kjaer, D. Fanourakis, and C.O. Ottosen. 2013. Smaller stomata require less severe leaf drying to close: a case study in Rosa hydrida. J. Plant Physiol. 170:1309-1316. doi:10.1016/j.jplph.2013.04.007

Hetherington, A.H., and F.I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901-908. doi:10.1038/nature01843

Hodgson, J.G., M. Sharafi, A. Jalili, S. Díaz, G. Montserrat-Martí, C. Palmer, B. Cerabolini, S. Pierce, B. Hamzehee, Y. Asri, Z. Jamzad, P. Wilson, J.A. Raven, S.R. Band, S. Basconcelo, A. Bogard, G. Carter, M. Charles, P. Castro-Díez, J.H. Cornelissen, G. Funes, G. Jones, M. Khoshnevis, N. Pérez-Harguindeguy, M.C. Pérez-Rontomé, F.A. Shirvany, F. Vendramini, S. Yazdani, R. Abbas-Azimi, S. Boustani, M. Dehghan, J. Guerrero-Campo, A. Hynd, E. Kowsary, F. Kazemi-Saeed, B. Siavash, P. Villar-Salvador, R. Craigie, A. Naqinezhad, A. Romo-Díez, L. de-Torres-Espuny, and E. Simmons. 2010. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genome dog? Ann. Bot. 105:573-584. doi:10.1093/aob/mcq011

Jifon, J.L., J.P. Syvertsen, and E. Whaley. 2005. Growth enviroment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus Sp. leaves. J. Amer. Soc. Hort. Sci. 130:152-158.

Klooster, B., and E. Palmer-Young. 2004. Water stress marginally increases stomatal density in E. canadensis, but not in A. gerardii. Tillers 5:35-40.

Lawson, T., and M.R. Blatt. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164:1556-1570. doi:10.1104/pp.114.237107

Lawson, T., A.J. Simkin, G. Kelly, and D. Granot. 2014. Mesophyll photosynthesis and guard cell metabolism impacts on stomatal behaviour. New Phytol. 203:1064-1081. doi:10.1111/nph.12945

Martin, W.J., and D.P. Stimart. 2005. Stomatal density in Antirrhinum majus L.: Inheritance and trends with development. HortSci. 40:1252-1258.

Meharun-Nisa, K.Y., K.A. Siddiqui, and A.Q. Soomro. 2009. Flag leaf stomatal frequency and its interrelationship with yield and yield components in wheat (Triticum aestivum L.). Pak. J. Bot. 41:663-666.

Melgoza-Castillo, A., C. Ortega-Ochoa, C.R. Morales-Niero, P. Jurado-Guerra, C. Velez-Sanchez-Verin, M.H. Royo-Márquez, G. Quintana-Martínez, A. Lafón-Terrazas, M.T. Alarcón.Herrera, G. Bezanilla-Enríquez, y C. Pinedo-Álvarez. 2007. Propagación de plantas nativas para la recuperación de áreas degradadas: opción para mejorar ecosistemas. Tecnocienc. Chihuahua 1(3):38-41.

Morales, C.R., C. Avendaño, A. Melgoza, K. Gil, A. Quero, P. Jurado, y M. Martínez. 2016. Caracterización morfológica y molecular de poblaciones de pasto banderita (Bouteloua curtipendula) en Chihuahua, México. Rev. Mex. Cienc. Pecu. 7:455-469.

Morales-Nieto, C., A. Quero-Carillo, O. Le-Blanc, A. Hernández-Garay, J. Pérez-Pérez, y S. González-Muñoz. 2006. Caracterización de la diversidad del pasto nativo Bouteloua curtipendula (Michx) Torr. mediante marcadores de AFLP. Agrociencia 40:711-720.

Morales-Nieto, C.R., A. Quero-Carrillo, J. Pérez-Pérez, A. Hernández-Garay, y O. Le-Blanc. 2008. Caracterización morfológica de poblaciones nativas de pasto banderita [Bouteloua curtipendula (Michx.) Torr.] en México. Agrociencia 42:767-775.

Palma-Rivero, M.P., A. López-Herrera, y J.C. Molina-Moreno. 2000. Condiciones de almacenamiento y germinación de semillas de Cenchrus ciliaris L. y Andropogon gayanus Kunth. Agrociencia 34:41-48.

Parkhurst, D.F., S.C. Wong, G.D. Farquar, and I.R. Cowan. 1988. Gradients of intracellular CO2 levels across the leaf mesophyll. Plant Physiol. 86:1032-1037. doi:10.1104/pp.86.4.1032

Perveen, A., R. Abid, and R. Fatima. 2007. Stomatal types of some dicots within flora of karachi, Pakistan. Pak. J. Bot. 39:1017-1023.

Raven, J.A. 2014. Speedy small stomata? J. Exp. Bot. 65:1415-1424. doi:10.1093/jxb/eru032

Reyes-López, D., J. Quiroz-Valentín, A. Kelso-Bucio, M. Huerta-Lara, C. Avendaño-Arrazate, y R. Lobato-Ortiz. 2015. Caracterización estomática de cinco especies del género Vanilla. Agron. Mesoam. 26:237-246. doi:10.15517/am.v26i2.19279

Rincón, A., y G.A. Ligarreto. 2010. Relación entre nitrógeno foliar y el contenido de clorofila, en maíz asociado con pastos en el Piedemonte Llanero colombiano. Corpoica Cienc. Tecnol. Agropecu. 11:122-128. doi:10.21930/rcta.vol11_num2_art:202

Rivera, C., A. Zapata, G. Pinilla, J. Donato, B. Chaparro, y P. Jiménez. 2005. Comparación de la estimación de la clorofila-a mediante los métodos espectrofotométrico y fluorométrico. Acta Biol. Colomb. 10(2):95-103.

Rodrigues, L.R., T.J. Rodrigues, R. Reis, e C.V. Filho. 2006. Avaliação de características fisiológicas de cinco cultivares de Cynodon. Acta Sci. Anim. Sci. 28:245-250. doi:10.4025/actascianimsci.v28i3.36

SAS. 2006. SAS/STAT 9.1.3 User´s guide. SAS Institute, Cary, NC, USA.

Schlüter, U., M. Muschak, D. Berger, and T. Altmann. 2003. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1-1) under different light regimes. J. Exp. Bot. 54:867-874. doi:10.1093/jxb/erg087

Taylor, S.H., P.J. Franks, S.P. Hulme, E. Springgs, P.A. Christin, E.J. Edwards, F.I. Woodward, and C.P. Osborne. 2012. Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytol. 193:387-396. doi:10.1111/j.1469-8137.2011.03935.x

Walton, P.D. 1980. The production characteristics of Bromus inermis leyss and their Inheritance. Adv. Agron. 33:341-369. doi:10.1016/S0065-2113(08)60171-6

Wang, Y., X. Chen, and C.B. Xiang. 2007. Stomatal density and bio-water saving. J. Integr. Plant Biol. 49:1435-1444. doi:10.1111/j.1672-9072.2007.00554.x

Wilkinson, H.P. 1979. The plant surface (mainly leaf). In: C.R. Metalcafe, and L. Chalk, editors, Anatomy of the dicotyledons. Vol. 1. Systematic Anatomy of the Leaf and Stem. 2nd ed. Claredon Press, Oxford, GBR. p. 97-117.

Wu, C., Z. Niu, Q. Tang, and W. Huang. 2008. Estimating chlorophyll content from hyperspectral vegetation indices: modeling and validation. Agric. For. Meteorol. 148:1230-1241. doi:10.1016/j.agrformet.2008.03.005

Xu, Z., and G. Zhou. 2008. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59:3317-3325. doi:10.1093/jxb/ern185

Published

2018-05-01

How to Cite

Álvarez-Holguín, A., Morales-Nieto, C. R., Corrales-Lerma, R., Avendaño-Arrazate, C. H., Rubio-Arias, H. O., & Villarreal-Guerrero, F. (2018). Stomatal characterization, chlorophyll concentration and their relation with biomass production of Bouteloua curtipendula. Agronomía Mesoamericana, 29(2), 251–261. https://doi.org/10.15517/ma.v29i2.29900

Most read articles by the same author(s)