https://revistas.ucr.ac.cr/index.php/agromesoAgronomía Mesoamericana ISSN electrónico: 2215-3608

Carbon sequestration in aerial biomass of the oil palm in Chiapas, Mexico

Rutver Aranda-Arguello, Alejandro Ley-de-Coss, Concepción Arce-Espino, René Pinto-Ruiz, Francisco Guevera-Hernández, Deb Raj-Aryal



DOI: https://doi.org/10.15517/ma.v29i3.32076

Abstract


Chiapas, Mexico, occupies the first place in surface and production of oil palm, as an alternative to mitigate climate change, for the potential of perennial crops to fix in their biomass the carbon (C) that is released in the form of environmental CO2. The objective of this work was to measure the carbon captured in the aerial fraction of the oil palm plant (Elaeis guineensis Jacq.). The study was conducted from January 2016 to June 2017 in three producing regions; where to twenty-one plants of twelve years on average, the stipe biomass was determined using the truncated cone technique, while for the leaves the equivalence of 65% of the biomass of the stipe was used. With these data, a descriptive statistic was made to know the biomass values. The amount of C was determined by the Walkley and Black method modified by UV spectrophotometry. The accumulated biomass per plant was 1877.30 kg, representing 268.45 t/ha with an average density of 143 plants/ha. 49.35% and 44.15% were carbon in stipe and leaves, respectively; therefore, the quantity of this element was 877.64 kg of carbon per plant, which represented 125.5 t/ha. An allometric equation was generated estimating the biomass from the volume of the stipe (y = 243.86 + 990.61x), as well as for the amount of carbon from the biomass (y = 149.07 + 0.39x). Two allometric models were determined with the data obtained from oil palm cultivation, which is suggested to be evaluated in the field to determine the degree of reliability in the estimation of biomass and carbon stored under the agroclimatic conditions similar to those of the present study.

Keywords


agroindustrial crop; allometric equation; environmental impact; carbon accumulation; oil production.

References


Acosta, M.M., H.J. Vargas, M.A. Velásquez, y J.D. Etchevers. 2002. Estimación de la biomasa aérea mediante el uso de relaciones alométricas en seis especies arbóreas en Oaxaca, México. Agrociencia 36:725-736.

Adger, W., K. Brown, R. Cervigni, and D. Moran. 1995. Total economic value of forest in Mexico. Ambio 24:286-296.

Arrieche, I., D.M. Ruíz, C.E. Carrillo-de-Cori, R.M. León, L.M. Aular, R. Mora, L. Castillo, M.R. Tovar, A. Martínez, T. Díaz, H. Baptista, J. Cruz, A.M. Reverón, C. Silva, y N. Alfonzo. 2013. Unificación de criterios para la determinación de la materia orgánica del suelo. Estudio interlaboratorio. Venesuelos 21:33-42.

Avendaño, D.M., M.M. Acosta, A.F. Carrillo, y J.D. Etchevers. 2009. Estimación de biomasa y carbono en un bosque de Abies religiosa. Rev. Fitotec. Mex. 32:233-238.

Brown, S. 1997. Estimating biomass and biomass change of tropical forests: A Primer. A Forest Resources Assessment publication. FAO, Roma, ITA.

Carrillo, A.F., M.M. Acosta, A.E. Flores, J.E. Juárez, y P.E. Bonilla. 2014. Estimación de biomasa y carbono en dos especies arbóreas en la Sierra Nevada, México. Rev. Mex. Cienc. Agríc. 5:779-793.

Castilla, C.E. 2004. Potencial de captura de carbono por la palma de aceite en Colombia. Palmas 25(esp.):366-371.

Concha, J.Y., J.C. Alegre, y V. Pocomucha. 2007. Determinación de las reservas de carbono en la biomasa aérea de sistemas agroforestales de Theobroma cacao L. en el departamento de San Martín, Perú. Ecol. Applic. 6:75-82.

Corley, R.H. V., B.S. Gray, and S.K. Ng. 1971. Productivity of the oil palm (Elaeis guineensis Jacq.) in Malaysia. Exp. Agric. 7:129-136. doi:10.1017/S0014479700004907

De-Jong, B.H., O. Masera, y T. Hernández. 2004. Opciones de captura de carbono en el sector forestal. En: J. Martínez, y B. A. Fernández, editores, Cambio Climático: una visión desde México. SEMARNAT, e INE, MEX. p. 369-380.

Díaz, F.R., M.M. Acosta, A.F. Carrillo, R.E. Buendía, A.E. Flores, y J.D. Etchevers. 2007. Determinación de ecuaciones alométricas para estimar biomasa y carbono en Pinus patula Schl. et Cham. Madera y Bosque 13:25-34.

Green House Gas Protocol. 2011. Product life cycle accounting and reporting standard. World Resources Institute, WA, USA. http://ghgprotocol.org/sites/default/files/standards/Product-Life-Cycle-Accounting-Reporting-Standard-EReader_041613_0.pdf (accessed 15 Oct. 2017).

Henson, I.E. 1993. Carbon assimilation, water use and energy balance of an oil palm plantation assessed using micrometeorological techniques. In: J. Sukaimi et al., editors, Proceedings of PORIM International Palm Oil Congress ‘Update and References 100 and Vision’ - Agriculture Module. Palm Oil Research Institute of Malaysia, Kuala Lumpur, MAS. p. 137-158.

Henson, I.E. 1999. Comparative ecophysiology of oil palm and tropical rain forest. In: G. Singh et al., editors, Oil palm and the environment. Malaysian Oil Palm Growers’ Council, Kuala Lumpur, MAS. p. 9-39.

INEGI (Instituto Nacional de Estadística, Geografía e Informática). 2004a. Cartas de edafología. Escala 1:250 000. Chiapas, México. INEGI, MEX. http://www.inegi.org.mx/geo/contenidos/recnat/edafologia/cartaedafologica.aspx. (consultado 24 nov. 2017).

INEGI (Instituto Nacional de Estadística, Geografía e Informática). 2004b. Guía para la interpretación de cartografía edafología. INEGI, MEX. http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825231736. (consultado 24 nov. 2017).

IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático). 2006. Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero. En: H.S. Eggleston et al., editores, Guía. Volumen 4. Agricultura, silvicultura y otros usos de la tierra. IGES, Hayama, JPN. http://www.ipcc-nggip.iges.or.jp/public/2006gl/spanish/vol4.html. (consultadol 24 nov. 2017).

IPCC (Grupo Intergubernamental de Expertos sobre el Cambio Climático). 2014. Cambio climático: Informe de síntesis. En: R.K. Pachauri, y L.A. Meyers, editores. Contribución de los grupos de trabajo I, II y III al quinto informe de evaluación del grupo intergubernamental de expertos sobre el cambio climático. IPCC, Ginebra, SUI, p.157.

Khalid, H., Z.Z. Zakaria, y J.M. Anderson. 2000. Cuantificación de la biomasa de la palma de aceite y su valor nutritivo en una plantación desarrollada: I. La biomasa encima del suelo. Palmas 21(1):67-77.

Leblanc, H., R. Russo, J.J. Cueva, y E. Subía. 2006. Fijación de carbono en palma aceitera en la región tropical húmeda de Costa Rica. Tierra Trop. 2:143-148.

Masera, O.R., M.R. Bellón, and G. Segura. 1995. Forest management options for sequestering carbon in Mexico. Bio. Bioener. 8:357-367. doi:10.1016/0961-9534(95)00028-3.

Ng, S.K., S. Thamboo, and P. De-Souza. 1968. Nutrient content on oil palm in Malaysia. II. Nutrient content in vegetative tissues. Malaysia Agri. J. 4: 332-391.

Pacheco, F.C., A. Aldrete, G.A. Gómez, A.M. Fierros, V.M. Cetina, y H.H. Vaquera. 2007. Almacenamiento de carbón en la biomasa aérea de una plantación joven de Pinus greggii Engelm. Rev. Fitotec. Mex. 30: 251-254.

Poh, H.M., W. Killmann, H.H. Wong, and M. Deraman. 1991. Press drying of oil palm trunks. In: K.C. Khoo et al., editors, Proceedings of the National Seminar of Oil Trunk and Other Palm Wood Utilization. FAO, Kuala Lumpur, MAS. p. 124-130.

Pulhin, F.B., R.D. Lascob, and J.P. Urquiolab. 2014. Carbon sequestration potential of oil palm in Bohol, Philippines. Ecosys. Develop. J. 4:14-19.

Rees, A.R., and P.B.H. Tinker. 1963. Dry matter production and nutrient content of plantation oil palms in Nigeria. Plant Soil. 19:350-363. doi:10.1007/BF01347859.

Rodríguez, M., R.L. Do, J.A. Dos-Santos, e E. Barcelos. 2000. Carbono e Nitrogênio na biomassa aérea de cultivo do dendê em Latossolo Amarelo na. Em: Embrapa Amazônia Ocidental, editores, Resumo do III Congresso brasileiro de sistemas agroflorestais: Manejando a biodiversidade e compondo a paisagem rural. Software Graphic Ltda., Manaus, Amazônia, BRA. p. 82-84.

Schlesinger, W.H. 1997. Biogeochemistry: an analysis of global change. Academic Press, San Diego, CA, USA.

SIAP (Servicio de Información Agroalimentaria y Pesquera). 2015. Estadística de la producción agrícola. SIAP, MEX. https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119 (Consultado 24 nov. 2016).

Thenkabail, P.S., N. Stucky, B.W. Griscom, A.S. Aston, J. Diels, B. Van-Deer-Meer, and E. Enclona. 2004. Biomass estimation and carbon stock calculations in the oil palm plantations of African derived savannas using IKONOS data. Int. J. Remote Sens. 25:5447-5472. doi:10.1080/01431160412331291279.

Tiong, G.L., L.G. Tong, Y.T. Ngan, and H.C. Yee. 1991. Yield and utilization of oil palm trunk limber. In: K.C. Khoo et al., editors, Proceedings of the National Seminar of Oil Trunk and Other Palm Wood Utilization. FAO, Kuala Lumpur, MAS. p. 131-144.

Torres, J.M., y A. Guevara. 2002. El potencial de México para la producción de servicios ambientales: captura de carbono y desempeño hidráulico. Gaceta Ecol. 1:40-59.

Walkley, A., and A. Black. 1934. An examination of the Degtjoreff method for determination soil organic matter, and a proposed codification of the chromic acid titration method. Soil Sci.37:29-38. doi:10.1097/00010694-193401000-00003


Refbacks

  • There are currently no refbacks.




Copyright (c) 2018 Mesoamerican Agronomy

© 2017 Universidad de Costa Rica. Para ver más detalles sobre la distribución de los artículos en este sitio visite el aviso legal. Este sitio es desarrollado por UCRIndex y Open Journal Systems. ¿Desea cosechar nuestros metadatos? dirección OAI-PMH: https://revistas.ucr.ac.cr/index.php/index/oai