Morphometric subpopulations study of white-tailed deer (Odocoileus virginianus peruvianus) epididymal spermatozoa
DOI:
https://doi.org/10.15517/am.v33i2.46938Keywords:
deer semen, CASA morph, animal reproduction, wildanimal genetic resourcesAbstract
Introduction. The study of the sperm morphometry of the white-tailed deer (Odocoileus virginianus peruvianus) allows to characterize the sperm cells of this species for conservation purposes. Objective. To determine the sperm subpopulations according to the morphometry of the epididymal spermatozoa of the white-tailed deer, using a CASA-Morph system. Materials and methods. The study was carried out in the second semester 2016, at the Universidad Nacional San Antonio Abad del Cusco, Peru. In semen samples obtained from the caudal end of the epididymis of two deer (two and four teeth), it was determined based on the CASA-Morph system, Integrated Semen Analysis System (ISAS®v1): the length, width, area, perimeter, ellipticity, elongation, regularity, and roughness of the sperm head were determined, also, the width, area, distance, and midpiece insertion angle of the sperm. Principal components analysis (PCA) was performed and the non-hierarchical k-means model was applied to determine the optimal number of clusters. Results. The morphometric variables were distributed in five PCAs: ellipticity, size, circularity, midpiece insertion angle, which explained 81.24 % of the total variance. The Cluster analysis determined four subpopulations (SP), SP1 grouped large, elongated cells with high elongation and ellipticity (21.76 %), SP2 composed of small and thin spermatozoa both in the head and in the midpiece (37.7 %). The SP3 was related to the presence of elongated cells with high values of midpiece width, ellipticity, and elongation (17.7 %), and SP4 grouped spermatozoa with intermediate size of the head and the midpiece (22.84 %). Conclusion. The determination of four sperm subpopulations in white-tailed deer semen can be the basis of assisted reproduction programs for this species.
Downloads
References
Ake-Lopez, J., Cavazos-Arizpe, E., Magana-Monforte, J. G., Centurion-Castro, F., & Silva-Mena, C. (2010). Effect of age and postmortem time on some White-Tailed deer (Odocoileus virginianus texanus) epididymal sperm characteristics and response of cryopreservation. American Journal of Animal and Veterinary Sciences, 5(3), 183–186. https://doi.org/10.3844/ajavsp.2010.183.186https://doi.org/10.3844/ajavsp.2010.183.186
Barquero, V., Roldan, E. R. S., Soler, C., Yániz, J. L., Camacho, M., & Valverde, A. (2021). Predictive Capacity of Boar Sperm Morphometry and Morphometric Sub-Populations on Reproductive Success after Artificial Insemination. Animals, 11(4), Article 920. https://doi.org/10.3390/ani11040920
Barquero, V., Víquez, L., Calderón-Calderón, J. C., & Valverde, A. (2021). Optimal frame rate to evaluate boar sperm kinematic with a CASA-Mot system. Agronomía Mesoamericana, 32(1), 1–18. https://doi.org/10.15517/am.v32i1.41928
Belleannée, C., Thimon, V., & Sullivan, R. (2012). Region-specific gene expression in the epididymis. Cell and Tissue Research, 349, 717–731. https://doi.org/10.1007/s00441-012-1381-0
Beracochea, F., Gil, J., Sestelo, A., Garde, J. J., Santiago-Moreno, J., Fumagalli, F., & Ungerfeld, R. (2014). Sperm characterization and identification of sperm sub-populations in ejaculates from pampas deer (Ozotoceros bezoarticus). Animal Reproduction Science, 149(3–4), 224–230. https://doi.org/10.1016/j.anireprosci.2014.07.013
Cooper, T. G., & Yeung, C. -H. (2006). Sperm maturaiton in the human epididymis. In C. J. De Jonge & C. Barratt (Eds.), The sperm cell production, maturation, fertilization, regeneration (pp. 72–107). Cambridge University Press. https://doi.org/10.1017/CBO9780511545115.005
Cornwall, G. A. (2009). New insights into epididymal biology and function. Human Reproduction Update, 15(2), 213–227. https://doi.org/10.1093/humupd/dmn055
Cucho, H., Gallegos, M., Ccoiso, R., Meza, A., Ampuero, E., Ordóñez, C., & Valverde, A. (2021). Morphometry and subpopulation of llama (Lama glama) sperm using the ISAS® CASA-Morph system. Revista de Investigaciones Veterinarias Del Peru, 32(1), Article e19506. https://doi.org/10.15381/RIVEP.V32I1.19506
Cucho, H., López, Y., Caldeira, C., Valverde, A., Ordóñez, C., & Soler, C. (2019). Comparison of three different staining methods for the morphometric characterization of Alpaca (Vicugna pacos) sperm , using ISAS ® CASA-Morph system. Nova Biologica Reperta, 6(3), 284–291. https://doi.org/10.29252/nbr.6.3.284
Curry, M. R. (2000). Cryopreservation of semen from domestic livestock. Reviews of Reproduction, 5(1), 46–52. https://doi.org/10.1530/ror.0.0050046
Downing-Meisner, A., Klaus, A. V., & O’Leary, M. A. (2005). Sperm head morphology in 36 species of artiodactylans, perissodactylans, and cetaceans (Mammalia). Journal of Morphology, 263(2), 179–202. https://doi.org/10.1002/jmor.10297
Esteso, M. C., Fernández-Santos, M. R., Soler, A. J., Montoro, V., Martínez-Pastor, F., & Garde, J. J. (2009). Identification of sperm-head morphometric subpopulations in iberian red deer epididymal sperm samples. Reproduction in Domestic Animals, 44(2), 206–211. https://doi.org/10.1111/j.1439-0531.2007.01029.x
Esteso, M. C., Rodríguez, E., Toledano-Díaz, A., Castaño, C., Pradiee, J., López-Sebastián, A., & Santiago-Moreno, J. (2015). Descriptive analysis of sperm head morphometry in Iberian ibex (Capra pyrenaica): Optimum sampling procedure and staining methods using Sperm-Class Analyzer®. Animal Reproduction Science, 155(1), 42–49. https://doi.org/10.1016/j.anireprosci.2015.01.014
Esteso, M. C., Soler, A. J., Fernández-Santos, M. R., Quintero-Moreno, A. A., & Garde, J. J. (2006). Functional significance of the sperm head morphometric size and shape for determining freezability in Iberian red deer (Cervus elaphus hispanicus) epididymal sperm samples. Journal of Andrology, 27(5), 662–670. https://doi.org/10.2164/jandrol.106.000489
Esteso, M. C., Toledano-Díaz, A., Castaño, C., Pradiee, J., Lopez-Sebastián, A., & Santiago-Moreno, J. (2018). Effect of two cooling protocols on the post-thaw characteristics of Iberian ibex sperms. Cryobiology, 80(1), 12–17. https://doi.org/10.1016/j.cryobiol.2018.01.003
Gaddum, P. (1968). Sperm maturation in the male reproductive tract: Development of motility. The Anatomical Record, 161(4), 471–482. https://doi.org/10.1002/ar.1091610409
Gage, M. (1998). Mammalian sperm morphometry. Proceedings of the Royal Society B: Biological Sciences, 265(1391), 97–103. https://doi.org/10.1098/rspb.1998.0269
Ministerio de Desarrollo Agrario y Riego del Perú. (2014). Decreto Supremo que aprueba la actualización de la lista de clasificación y categorización de las especies amenazadas de fauna silvestre legalmente protegidas (Nº 004-2014-MINAGRI). Organización de las Naciones Unidas para la Alimentación y la Agricultura. http://extwprlegs1.fao.org/docs/pdf/per132692.pdf
Hernández-Corredor, L., Silva-Torres, A., Celis-Alba, D., Landaeta-Hernández, A., & Rubio-Parada, J. (2018). Evaluación de la motilidad y morfometría en espermatozoides descongelados de venado cola blanca (Odocoileus virginianus). ResearchGate. https://n9.cl/w5eb8
Hidalgo, M., Rodríguez, I., Dorado, J., & Soler, C. (2008). Morphometric classification of Spanish thoroughbred stallion sperm heads. Animal Reproduction Science, 103(3–4), 374–378. https://doi.org/10.1016/j.anireprosci.2007.06.001
Kaiser, H. F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23(3), 187–200. https://doi.org/10.1007/BF02289233
Kaufman, L., & Rousseeuw, P. J. (2005). Finding groups in data : an introduction to cluster analysis. John Wiley Sons, Inc., Publications. https://doi.org/10.1002/9780470316801
Kirschner, S. M., & Rodenkirch, R. (2017). Assessment of butorphanol-azaperone-medetomidine combination as anesthesia for semen collection and evaluation of semen quality in white-tailed deer (Odocoileus virginianus). Animal Reproduction Science, 184(1), 196–203. https://doi.org/10.1016/j.anireprosci.2017.07.016
Maroto-Morales, A., García-Álvarez, O., Ramón, M., Martínez-Pastor, F., Fernández-Santos, M. R., Soler, A., & Garde, J. J. (2016). Current status and potential of morphometric sperm analysis. Asian Journal of Andrology, 18(6), 863–870. https://doi.org/10.4103/1008-682X.187581
Martí, J. I., Aparicio, I. M., Leal, C. L. V., & García-Herreros, M. (2012). Seasonal dynamics of sperm morphometric subpopulations and its association with sperm quality parameters in ram ejaculates. Theriogenology, 78(3), 528–541. https://doi.org/10.1016/j.theriogenology.2012.02.035
Martinez-Pastor, F., Diaz-Corujo, A. R., Anel, E., Herraez, P., Anel, L., & de Paz, P. (2005). Post mortem time and season alter subpopulation characteristics of Iberian red deer epididymal sperm. Theriogenology, 64(4), 958–974. https://doi.org/10.1016/j.theriogenology.2005.01.003
Martinez-Pastor, F., Garcia-Macias, V., Alvarez, M., Chamorro, C., Herraez, P., de Paz, P., & Anel, L. (2006). Comparison of two methods for obtaining spermatozoa from the cauda epididymis of Iberian red deer. Theriogenology, 65(3), 471–485. https://doi.org/10.1016/j.theriogenology.2005.05.045
Martinez-Pastor, F., Garcia-Macias, V., Alvarez, M., Herraez, P., Anel, L., & de Paz, P. (2005). Sperm Subpopulations in Iberian Red Deer Epididymal Sperm and Their Changes Through the Cryopreservation Process. Biology of Reproduction, 72(2), 316–327. https://doi.org/10.1095/biolreprod.104.032730
Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification, 31(3), 274–295. https://doi.org/10.1007/s00357-014-9161-z
Orgebin-Crist, M. C. (1967). Sperm maturation in rabbit epididymis. Nature, 216(5117), 816–818. https://doi.org/10.1038/216816a0
Pacheco, V., Cadenillas, R., Salas, E., Tello, C., & Zeballos, H. (2009). Diversidad y endemismo de los mamíferos del Perú. Revista Peruana de Biología, 16(1), 5–32. https://doi.org/10.15381/rpb.v16i1.111
Peña, F., Saravia, F., García-Herreros, M., Núñez-Martínez, I., Tapia, J., Johannisson, A., Wallgren, M., & Rodríguez-Martínez, H. (2005). Identification of sperm morphometric subpopulations in two different portions of the boar ejaculate and its relation to postthaw quality. Journal of Andrology, 26(6), 716–723. https://doi.org/10.2164/jandrol.05030
Peña Hernández, A. E. (2014). Evaluación objetiva de la motilidad de los espermatozoides epididimarios de ciervo ibérico. Relaciones con la congelabilidad y la calidad del semen [Tesis de Doctorado, Universidad de Castilla-La Mancha]. Repositorio institucional del Consejo Superior de Investigaciones Científicas. https://digital.csic.es/handle/10261/147311
Ramírez Lozano, R. G. (2012). Alimentación Del Venado Cola Blanca: Biología y Ecología Nutricional. Palibrio.
Ramón, M., Martínez-Pastor, F., García-Álvarez, O., Maroto-Morales, A., Soler, A. J., Jiménez-Rabadán, P., Fernández-Santos, M. R., Bernabéu, R., & Garde, J. J. (2012). Taking advantage of the use of supervised learning methods for characterization of sperm population structure related with freezability in the Iberian red deer. Theriogenology, 77(8), 1661–1672. https://doi.org/10.1016/j.theriogenology.2011.12.011
Ramón, M., Soler, A. J., Ortiz, J. A., García-Alvarez, O., Maroto-Morales, A., Roldan, E. R. S., & Garde, J. J. (2013). Sperm population structure and male fertility: An intraspecific study of sperm design and velocity in Red Deer. Biology of Reproduction, 89(5), 1-7. https://doi.org/10.1095/biolreprod.113.112110
Robaire, B., Hinton, B., & Orgebin-Crist, M. (2015). Knobil and Neill’s Physiology of Reproduction. In T. M. Plant & A. J. Zeleznik (Eds.), Physiology of reproduction (4th Ed., pp. 691–771). Elsevier Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-397175-3.15001-X.
Soler, C., Alambiaga, A., Martí, M. A., García-Molina, A., Valverde, A., Contell, J., & Campos, M. (2017). Dog sperm head morphometry: its diversity and evolution. Asian Journal of Andrology, 19(2), 149–153. https://doi.org/10.4103/1008-682X.189207
Soler, C., Contell, J., Bori, L., Sancho, M., García-Molina, A., Valverde, A., & Segarvall, J. (2017). Sperm kinematic, head morphometric and kinetic-morphometric subpopulations in the blue fox (Alopex lagopus). Asian Journal of Andrology, 19(2), 154–159. https://doi.org/10.4103/1008-682X.188445
Soler, C., Cooper, T., Valverde, A., & Yániz, J. (2016). Afterword to Sperm morphometrics today and tomorrow special issue in Asian Journal of Andrology. Asian Journal of Andrology, 18(6), 895–897. https://doi.org/10.4103/1008-682X.188451
Soler, C., Gadea, B., Soler, A., Fernández-Santos, M., Esteso, M., Núñez, J., Moreira, P., Núñez, M., Gutiérrez, R., Sancho, M., & Garde, J. (2005). Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS®. Theriogenology, 64(5), 1236–1243. https://doi.org/10.1016/j.theriogenology.2005.02.018
Souza, T. (2009). Avaliação andrológica e criopreservação de sêmen de pumas (Puma concolor Linnaeus, 1771) adultos. [Magister Dissertation, Universidad Federal de Viçosa] Repositório do Universidad Federal de Viçosa. https://www.locus.ufv.br/bitstream/123456789/4980/1/texto%20completo.pdf
Spencer, N. H. (2013). Essentials of multivariate data analysis. Chapman and Hall/CRC Press. https://doi.org/10.1201/b16344
Thurston, L., Watson, P., Mileham, A., & Holt, W. (2001). Morphologically distinct sperm subpopulations defined by Fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. Journal of Andrology, 22(3), 382–394. http://www.ncbi.nlm.nih.gov/pubmed/11330638
Tuset, V. M., Dietrich, G. J., Wojtczak, M., Słowińska, M., de Monserrat, J., & Ciereszko, A. (2008). Comparison of three staining techniques for the morphometric study of rainbow trout (Oncorhynchus mykiss) spermatozoa. Theriogenology, 69(8), 1033–1038. https://doi.org/10.1016/j.theriogenology.2008.01.012
Valverde, A., Arenán, H., Sancho, M., Contell, J., Yániz, J., Fernández, A., & Soler, C. (2016). Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws. Asian Journal of Andrology, 18(6), 851–857. https://doi.org/10.4103/1008-682X.187579
Valverde, A., Barquero, V., & Soler, C. (2020). The application of computer-assisted semen analysis (CASA) technology to optimise semen evaluation. A review. Journal of Animal and Feed Sciences, 29(3), 189–198. https://doi.org/10.22358/jafs/127691/2020
Valverde, A., Castro-Morales, O., Madrigal-Valverde, M., Camacho, M., Barquero, V., Soler, C., & Roldan, E. R. S. (2021). Sperm kinematic subpopulations of the American crocodile (Crocodylus acutus). PLOS ONE, 16(3), Article e0248270. https://doi.org/10.1371/journal.pone.0248270
Valverde, A., Castro-Morales, O., Madrigal-Valverde, M., & Soler, C. (2019). Sperm kinematics and morphometric subpopulations analysis with CASA systems: A review. Revista de Biología Tropical, 67(6), 1473–1487. https://doi.org/10.15517/rbt.v67i6.35151
Valverde, A., Madrigal-Valverde, M., Camacho-Calvo, M., Zambrana-Jiménez, A., & López, L. (2018). Efecto de la composición racial sobre la calidad espermática de verracos. Agronomía Mesoamericana, 29(3), 485–506. https://doi.org/10.15517/ma.v29i3.32445
Valverde, A., Madrigal-Valverde, M., Castro-Morales, O., Gadea-Rivas, A., Johnston, S., & Soler, C. (2019). Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus). Animal Reproduction Science, 207(1), 9–20. https://doi.org/10.1016/J.ANIREPROSCI.2019.06.011
Víquez, L., Barquero, V., Soler, C., Roldan, E. R. S., & Valverde, A. (2020). Kinematic Sub-Populations in Bull Spermatozoa: A Comparison of Classical and Bayesian Approaches. Biology, 9(6), 138–154. https://doi.org/10.3390/biology9060138
Yániz, J. L., Palacín, I., Vicente-Fiel, S., Sánchez-Nadal, J. A., & Santolaria, P. (2015). Sperm population structure in high and low field fertility rams. Animal Reproduction Science, 156, 128–134. https://doi.org/10.1016/j.anireprosci.2015.03.012
Yániz, J. L., Soler, C., & Santolaria, P. (2015). Computer assisted sperm morphometry in mammals: A review. Animal Reproduction Science, 156, 1–12. https://doi.org/10.1016/J.ANIREPROSCI.2015.03.002
Yániz, J. L., Vicente-Fiel, S., Soler, C., Recreo, P., Carretero, T., Bono, A., Berné, J. M., & Santolaria, P. (2016). Comparison of different statistical approaches to evaluate morphometric sperm subpopulations in men. Asian Journal of Andrology, 18(6), 819–823. https://doi.org/10.4103/1008-682X.186872
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).