Physical and chemical characterization of residual palm (Elaeis guineensis Jacq.) biomass in the Peruvian Amazon
DOI:
https://doi.org/10.15517/am.v33i3.48170Keywords:
celullose, hemicellulose, lignins, solubility, moistureAbstract
Introduction. The oil palm (Elaeis guineensis Jacq.) in the Peruvian Amazon has an installed production area of 72,861 ha, whose fruit processing generates solid residues such as the stalk and dry mesocarp. Objective. To determine the physicochemical characteristics of the residual biomass, stalk, and fruit fiber from palm oil extraction in the Peruvian Amazon, for its potential use in the elaboration of biodegradable materials. Materials and methods. During August to October 2020, 19.39 t/day of stalk and 13.05 t/day of oil palm fruit fiber were collected in Pucallpa, Neshuya District, Peru. Solubility analyzes in hot water and moisture were determined using the American standard test (American Society for Testing and Materials). The solubility in soda was obtained using the Technical Association of the Pulp and Paper Industry standard method. High performance liquid chromatography (HPLC) and refractive index (RI) detector were used to determine cellulose, hemicellulose, and lignin. Results. The physical properties of moisture (%) and solubility in soda (%) showed no differences between stalk and fiber. Both stalk and the fiber showed solubility in hot water, with values lower than 17 %. The chemical properties of the fiber were higher than those in the stalk, based on the percentage of cellulose, hemicellulose, and lignin. Conclusions. The physical and chemical results of oil palm stalk and fruit fiber would allow the development of appropriate technological processes for their conversion to biological products.
Downloads
References
Afzal, A., Khaliq, Z., Ahmad, S., Ahmad, F., Noor, A., & Bilal Qadir, M. (2021). Development and characterization of biodegradable composite film. Environmental Technology & Innovation, 23, Article 101664. https://doi.org/10.1016/j.eti.2021.101664
Ali, M. M., Muhadi, N. A., Hashim, N., Abdullah, A. F., & Mahadi, M. R. (2020). Pulp and paper production from oil palm empty fruit bunches: A current direction in Malaysia. Journal of Agricultural and Food Engineering, 2, Article 0017. http://doi.org/10.37865/jafe.2020.0017
American Society for Testing and Materials. (2010). D644-99. Standard test method for moisture content of paper and paperboard by oven drying (ASTM D644-99). ASTM Intenational. https://www.astm.org/d0644-99.html
American Society for Testing and Materials. (2021a). D1110-21. Standard test methods for water solubility of wood (ASTM D1110-21). ASTM International. https://www.astm.org/d1110-21.html
American Society for Testing and Materials. (2021b). D1109-21. Standard Test Method for 1 % Sodium Hydroxide Solubility of Wood (ASTM D1109-21). ASTM International. https://www.astm.org/d1109-21.html
Arévalo Vergel, A. C., Villamizar Fuentes, D. S., & Ramón Valencia, B. (2019). Caracterización química de la biomasa residual obtenida a partir de la palma de aceite (Elaeis guineensis) para posibles usos en la elaboración de tableros de partículas. Bistua: Revista de la Facultad de Ciencias Básicas, 17(1), 59–64.
Awalludin, M. F., Sulaiman, O., Hashim, R., & Wan Nadhari, W. V. A. (2015). An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction. Renewable and Sustainable Energy Reviews, 50, 1469–1484. https://doi.org/10.1016/j.rser.2015.05.085
Bozzelli, J. (2017, mayo 1). Analizar la humedad del material antes de iniciar el proceso de inyección. Plastics Technology México. https://bit.ly/3NUddGQ
Dharmaraja, J., Shobana, S., Arvindnarayan, S., Vadivel, M., Aatabani, A. E., Pugazhendhi, A., & Kumar, G. (2020). Biobutanol from lignocellulosic biomass: bioprocess strategies. Lignocellulosic biomass to liquid biofuels. In A. Yousuf, D. Pirozzi, & F. Sannino (Eds.), Lignocellulosic Biomass to Liquid Biofuels (Chapter 5; pp. 169–193). Academic Press. https://doi.org/10.1016/B978-0-12-815936-1.00005-8
Fortunati, E., & Balesta, G. M. (2019). Lignocellulosic materials as novel carriers, also at nanoscale, of organic active principles for agri-food applications. Biomass, Biopolymer-Based Materials, and Bioenergy, 2019, 161–178. https://doi.org/10.1016/B978-0-08-102426-3.00009-6
Galiwango, E., Abdel Rahman, N. S., Al-Marzouqi, A. H., Abu-Omar, M. M., & Khaleel, A. A. (2019). Isolation and characterization of cellulose and α-cellulose from date palm biomass waste. Heliyon, 5(12), Article e02937. https://doi.org/10.1016/j.heliyon.2019.e02937
González Velandia, K. D., Daza Rey, D., Caballero Amado, P. A., & Martínez González, C. (2016). Evaluacion de las propiedades físicas y Químicas de residuos sólidos orgánicos a emplearse en la elaboracion de papel. Luna azul, 43, 499–517. http://www.redalyc.org/articulo.oa?id=321745921021
Hashim, S. N. A. S., Norizan, B. A., Barahin, K. W., Zakaria, S., Chia, C. H., Potthast, A., Schiehser, S., Bacher, M., Rosenau, T., & Jaafar, S. N. S. (2020). In-depth characterization of cellulosic pulps from oil palm empty fruit bunches and kenaf core, dissolution and preparation of cellulose membranes. Cellulose Chemistry and Technology, 54(7–8), 643–652.
Hernández-Cázares, A. S., Real-Luna, N., Delgado-Blancas, M. I., Bautista-Hernández, L., & Velasco-Velasco, J. (2016). Residuos agroindustriales con potencial de compostaje. AgroProductividad, 9(8), 10–17.
IndexMundi. (2021). Palm oil area harvested annual growth rate by country. https://bit.ly/3O39XcC
Lee, J. T. E, Usman Khan, M., Tian, H., Ee, A. W. L., Yang Lim, E., Dai, Y., Wah Tong, Y., & Ahring, B. K. (2020). Improving methane yield of oil palm empty fruit bunches by wet oxidation pretreatment: Mesophilic and thermophilic anaerobic digestion conditions and the associated global warming potential effects. Energy Conversion and Management, 225, Article 113438. https://doi.org/10.1016/j.enconman.2020.113438
Loong Yiin, C., Ho, S., Yusup, S., Quitain, A. T., Herng Chang, Y., Chun Minh Loy, A., & Ling Gwee, Y. (2019). Recovery of cellulose fibers from oil palm empty fruit bunch for pulp and paper using green delignification approach. Bioresource Technology, 290, Article 121797. https://doi.org/10.1016/j.biortech.2019.121797
Ministerio de Agricultura y Riego. (2019). Anuario estadístico de producción agrícola. Ministerio de Agricultura y Riego.
Miranda Ruiz, E. (2012). Aprovechamiento y efecto del escobajo de palma aceitera (Elaeis guineensis, Jacq), como fuente orgánica en plantaciones de 7 años, en la producción de racimo fresco en el distrito de Campo Verde - Región Ucayali. El Cid Editor.
Mohamad Ibrahim, M. N., Chuah, S. B., & Wan Rosli, W. D. (2004). Characterization of lignin precipitated from the soda black liquor of oil palm empty fruit bunch fibers by various mineral acids. ASEAN Journal on Science & Techology for Development, 21(1), 57–67. https://doi.org/10.29037/ajstd.92
Ng, C. Y., Khoo, L. H., Ng, L. Y., Ong, C. B., Mahmoudi, E., Rohani, R., & Mohammad, A. W. (2020). Novel polyethersulfone-cellulose composite thin film using sustainable empty fruit bunches from Elaeis guineensis for methylene blue removal. Polymer Testing, 86, Article 106494. https://doi.org/10.1016/j.polymertesting.2020.106494
Onuorah, E. O., Nwabanne, J. T., & Nnabuife, E. L. C. (2015). Pulp and paper making potentials of Elaeis guineensis (oil palm) grown in south east, Nigeria. World Journal of Engineering, 12(1), 1–12. https://doi.org/10.1260/1708-5284.12.1.1
Organización de Naciones Unidas para la Agricultura y la Alimentación. (2019). Cultivos y productos de ganadería. http://www.fao.org/faostat/es/#data/QC
Ortiz-Serna, P., Carsí, M., Culebras, M., Collins, M. N., & Sanchis, M. J. (2020). Exploring the role of lignin structure inmolecular dynamics of lignin/bioderived thermoplastic elastomer polyurethane blends. International Journal of Biological Macromolecules, 158, 1369–1379. https://doi.org/10.1016/j.ijbiomac.2020.04.261
Pereira, P. H. F., Souza, N. F., Ornaghi Jr., H. L., & Rosas de Freitas, M. (2020). Comparative analysis of different chlorine-free extraction on oil palm mesocarp fiber. Industrial Crops and Products, 150, Article 112305. https://doi.org/10.1016/j.indcrop.2020.112305
Pretell, V., & Erazo, R. (2019, July 24-26). Evaluation of the physicochemical and thermogravimetric properties of three Peruvian biomasses for their energetic use [Conference presentation]. 17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And Infrastructure for Sustainable Cities and Communities”. Montego Bay, Jamaica. http://doi.org/10.18687/LACCEI2019.1.1.282
Puello, B., & Zabaleta, L. (2014). Obtención de una película biodegradable a partir del olote de maiz para ser utilizado como empaque de alimentos a escala laboratorio en la Universidad de San Buenaventura Cartagena [Trabajo de Grado, no publicado]. Univerdad de San Buenavntura Seccional Cartagena.
Qin, Z., Yang, Q., Cheng, X., Liu, H., & Wang, X. (2021). Structural features, chemical composition, antioxidant activities of organosolv lignins extracted from black and white sesame capsules and stalks. Industrial Crops and Products, 169, Article 113677. https://doi.org/10.1016/j.indcrop.2021.113677
Ramírez, N. E., Arévalo, A., & García-Núñez, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Revista Palmas, 36(4), 41–54.
Ramos Sevilla, I. (2017). Caracterización química de tres residuos lignocelulósicos generados en la región del Cantón AlausÍ. Revista del Instituto de Investigación de la Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica, 20(40), 80–85.
Rana, V., Malik, S., Joshi, G., Kumar Raiput, N., & Gupta, P. K. (2021). Preparation of alpha cellulose from sugarcane bagasse and its cationization: Synthesis, characterization, validation and application as wet-end additive. International Journal of Biological Macromolecules, 170, 793–809. https://doi.org/10.1016/j.ijbiomac.2020.12.165
Rathamat, Z., Choorit, W., Chisti, Y., & Prasertsan, P. (2021). Two-step isolation of hemicellulose from oil palm empty fruit bunch fibers and its use in production of xylooligosaccharide prebiotic. Industrial Crops and Products, 160, Article 113124. https://doi.org/10.1016/j.indcrop.2020.113124
Saadiah Hafid, H., Samsu Baharuddin, A., Noriznan Mokhtar, M., Nadia Omar, F., Afandi P Mohammed, M., & Wakisaka, M. (2021). Enhanced laccase production for oil palm biomass delignification using biological pretreatment and its estimation at biorefinary scale. Biomass and Bionenergy, 144, Article 105904. https://doi.org/10.1016/j.biombioe.2020.105904
Sakeri, S. H., Mohamad Ibrahim, M. N., Umar, K., Yaqoob, A. A., Azmi, M., Hussin, M. H., Othman, M. B. H., & Abdul Malik, M. F. (2020). Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. International Journal of Biological Macromolecules, 164, 3114–3124. https://doi.org/10.1016/j.ijbiomac.2020.08.181
Sánchez Riaño, A. M., Gutiérrez Morales, A. I., Muñoz Hernández, J. A., & Rivera Barrero., C. A. (2010). Producción de bioetanol a partir de subproductos agroindustriales lignocelulosicos. Revista Tumgaba, 1(5), 61–91.
Serrano-Ruiz, H., Martin-Closas, L., & Pelacho, A. M. (2021). Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of The Total Environment, 750, Article 141228. https://doi.org/10.1016/j.scitotenv.2020.141228
Sociedad Peruana de Ecodesarrollo. (2018). Análisis Situacional de los principales commodities peruanos con riesgo a la deforestación. Sociedad Peruana de Ecodesarrollo.
Talero, G., Rincón, S., & Gómez, A. (2019). Torrefaction of oil palm residual biomass: Thermogravimetric characterization. Fuel, 242, 496–506. https://doi.org/10.1016/j.fuel.2019.01.057
Technical Association of the Pulp and Paper Industry. (2002). Reducing a gross sample of granular or aggregate material to testing size, test method T 605 w-00. Technical Association of the Pulp and Paper Industry.
Trogen, M., Le, N., Sawada, D., Guizani, C., Vergara Lourençon, T., Pitkänen, L., Sixta, H., Shah, R., O’Neill, H., Balakshin, M., Byrne, N., & Hummel, M. (2021). Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 - Manufacturing and properties of precursor fibres. Carbohydrate Polymers, 252, Article 117133. https://doi.org/10.1016/j.carbpol.2020.117133
Tye, Y. Y., Leh, C. P., & Abdullah, W. N. W. (2017). Total glucose yield as the single response in optimizing pretreatments for Elaeis guineensis fibre enzymatic hydrolysis and its relationship with chemical composition of fibre. Renewable Energy, 114, 383–393. https://doi.org/10.1016/j.renene.2017.07.040
Vibe Scheller, H., & Ulvskov, P. (2010). Hemicelluloses. Annual Review of Plant Biology, 61, 263–289. https://doi.org/10.1146/annurev-arplant-042809-112315
Wightman, R., Busse-Wicher, M., & Dupree, P. (2019). Correlative FLIM-confocal-Raman mapping applied to plant lignin composition and autofluorescence. Micron, 126, Article 102733. https://doi.org/10.1016/j.micron.2019.102733
Woittiez, L. S., van Mijk, M., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002
Yahayu, M., Abas, F. Z., Zulkifli, S. E., & Ani, F. N. 2018. Utilization of oil palm fiber and palm kernel shell in various applications. In Z. A. Zakaria (Ed.), Sustainable technologies for the management of agricultural wastes, applied environmental science and engineering for a sustainable future (pp. 45–64). Springer Nature. https://doi.org/10.1007/978-981-10-5062-6_4
Zar, J. H. (2019). Biostatistical analysis (6th ed.). Pearson.
Zhang, C., Mo, J., Fu, Q., Liu, Y., Wang, S., & Nie, S. (2021). Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 81, Article 105637. https://doi.org/10.1016/j.nanoen.2020.105637
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).