Carbon stocks in coffee (C. arabica L.) agroforestry systems in the face of climate change: México case
DOI:
https://doi.org/10.15517/am.v33i3.48671Keywords:
carbon simulation, aboverground biomass, soil organic carbon, shade trees, climate change scenariosAbstract
Introduction. Climate change can alter carbon (C) stocks stored in coffee agroforestry systems. Objective. To simulate C stocks in the aboveground biomass (ABOS) and soil (COS) at a fifty-years projection under the baseline and climate change scenarios in agroforestry systems with coffee, using the CO2Fix model. Materials and methods. In 2020, the baseline total C (ABOC + COS) was established in twenty-five organic coffee plots of the Catuai Amarillo S. de SS Society, Chcaman, Veracruz, Mexico. The plots were classified into three agroforestry designs: D1 (shade trees -coffee on slopes), D2 (shade trees -coffee-banana on slopes), and D3 (shade trees -coffee-banana in the valley). The CO2Fix model was used to simulate the total C stocks at a fifty-years projection under the baseline and climate change scenarios in the three agroforestry designs with coffee. Results. The total C in the baseline was 124.59, 107.43, and 102.320 t ha-1 for D1, D2, and D3, respectively. There were decreases between 0,77 and 8,75 t ha-1 in the low total C stocks under climate change scenarios in the three agroforestry designs evaluated. There were no statistically significant differences between agroforestry designs in the baseline and under climate change scenarios. Although variations were found, total C stocks were maintained over time. The tree cohort was the main storage source of total C storage. Conclusion. It was possible to simulate, in a fifty-year projection, the carbon stocks in aboveground biomass and soil in the baseline, under different climate change scenarios, using the CO2Fix model, in agroforestry systems with coffee from the Catuai Amarillo S. de S.S. Society.
Downloads
References
Ajit, Dhyani, S. K., Handa, A. K., Newaj, R., Chavan, S. B., Alam, B., Prasad, R., Ram, A., Rizvi, R. H., Jain, A. K., Uma., Tripathi, D., Shakhela, R. R., Patel, A. G., Dalvi, V. V., Saxena, A. K., Parihar, A. K. S., Backiyavathy, M. R., Sudhagar, R. J., … Gunasekaran, S. (2017). Estimating carbon sequestration potential of existing agroforestry systems in India. Agroforestry Systems, 91, 1101–1118. https://doi.org/10.1007/s10457-016-9986-z
Alder, D., & Silva, J. N. M. (2000). An empirical cohort model form management of Terra Firme forests in the Brazilian Amazon. Forest Ecology and Management, 130(1–3), 141–157. https://doi.org/10.1016/S0378-1127(99)00196-6
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (2006). Evapotranspiración del cultivo. Guías para la determinación de los requerimientos de agua de los cultivos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. http://www.fao.org/3/x0490s/x0490s00.htm
Álvarez Arteaga, G., Ibáñez Huerta, A., García Calderón, N. E., & Almendros Martín, G. (2012). Almacenes de carbono y estabilidad de la materia orgánica del suelo en un agroecosistema cafetalero en la Sierra Sur de Oaxaca, México. Tropical and Subropical Agroecosystems, 15, 611–620. http://hdl.handle.net/20.500.11799/68299
Álvarez, S., & Rubio, A. (2016). Wood Use and Forest Management for Carbon Sequestration in Community Forestry in Sierra Juarez, Mexico. Small-Scale Forestry, 15, 357–374. https://doi.org/10.1007/s11842-016-9325-2
Balaba Tumwebaze, S., & Byakagaba, P. (2016). Soil organic carbon stocks under coffee agroforesty systems and coffee monoculture in Uganda. Agriculture, Ecosystems and Environment, 216, 188–193. http://doi.org/10.1016/j.agee.2015.09.037
Betemariyam, M., Negash, M., & Worku, A. (2020). Comparative analysis of carbon stocks in home garden and adjacent coffee based agroforestry systems in Ethiopia. Small-Scale Forestry, 19, 319–334. https://doi.org/10.1007/s11842-020-09439-4
Brigido, J. G., Nikolskii I., Terrazas, L., & Herrera, S. S. (2015). Estimación del impacto del cambio climático sobre fertilidad del suelo y productividad de café en Veracruz, México. Tecnología y Ciencias del Agua, 6(4), 101–116. http://revistatyca.org.mx/ojs/index.php/tyca/issue/view/373/pdf_11
Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria. (2019). Comercio internacional del café, el caso de México. Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria. http://www.cedrssa.gob.mx/files/b/13/94Caf%C3%A9%20-Producci%C3%B3n%20y%20Consumo.pdf
Chatterjee, N., Ramachandran Nair, P. K., Nair, V. D., Bhattacharjee, A., Virginio Filho, E. M., Muschler, R. G., & Noponen, M. R. A. (2020). Do coffee agroforestry systems always improve soil carbon stocks deeper in the soil?—A case study from Turrialba, Costa Rica. Forests , 11, Article 49. https://doi.org/10.3390/f11010049
Chen, J., Elsgaard, L., van Groenigen, K. J., Olesen, J. E., Liang, Z., Jiang, Y., Laerke, P. E., Zhang, Y., Luo, Y., Hungate, B. A., Sinsabaugh, R. L., & Jorgensen, U. (2020). Soil carbon los with warming: New evidence from carbon-degrading enzymes. Global Change Biology, 26, 1944–1952. http://doi.org/10.1111/gcb.14986
Comisión Nacional del Agua - Servicio Meteorológico Nacional. (s.f.). Base de datos del CLICOM. Recuperado el 25 junio, 2020, de http://clicom-mex.cicese.mx/mapa.html
Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341–344. https://doi.org/10.1038/nature11882
Ehrenbergerová, L., Cienciala, E., Kucˇera, A., Guy, L., & Habrová, H. (2016). Carbon stock in agroforestry coffee plantations with different shade tres in Villa Rica, Peru. Agroforestry Systems, 90, 433–445. http://doi.org/10.1007/s10457-015-9865-z
Elms, R. (2019). Mexican coffee production continues to rebound from coffee rust disease. United States Department of Agriculture. https://bit.ly/3tclpuw
Fekadu Hailu, A. F., Soremessa T., & Warkineh Dullo, B. (2021) Carbon sequestration and storage value of coffee forest in Southwestern Ethiopia. Carbon Management, 12(5), 531–548. https://doi.org/10.1080/17583004.2021.1976
García, E. (2004). Modificaciones al sistema de clasificación climática de Köppen (5ª ed.). Instituto de Geografía de la Universidad Nacional Autónoma de México. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1
Instituto Nacional de Estadística Geografía e Informática. (2013). Continuo nacional de unidades edafológicas Serie II. Conjunto de datos de perfiles de suelos Escala 1, 250 000 Serie II. https://www.inegi.org.mx/temas/edafologia/
Intergovernmental Panel on Climate Change. (2021). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The physical science basis.Contribution of working group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press.
Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18, 35–46. https://doi.org/10.1038/s41579-019-0265-7
Kim, H., Kim, Y. -H., Kim, R., & Park, H. (2015). Reviews of forest carbon dynamics models that use empirical yield curves: CBM-CFS3, CO2FIX, CASMOFOR, EFISCEN. Forest Science and Technology, 11(4), 212–222. https://doi.org/10.1080/21580103.2014.987325
Kuyah, S., Dietz J., Muthuri, C., Jamnadass, R., Mwangi, P., Coe, R., &. Neufeldt, H. (2012). Allometric equations for estimating biomass in agricultural landscapes: I. aboveground biomass. Agriculture, Ecosystems and Environment, 158, 216–24. https://doi.org/10.1016/j.agee.2012.05.011
Lozano-García, B., Muñoz-Rojas, M., & Parras-Alcántara, L. (2017). Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 579, 1249–1259. https://doi.org/10.1016/j.scitotenv.2016.11.111
Madountsap Tagnang, N., Zapfack, L., Chimi Djomo, C., Kabelong Banoho, L. -Paul., Forbi Preasious, F., Tsopmejio Temfack, I., Tajeukem Vice, C., Ntonmen Yonkeu, A. F., Tabue Mboba, R. B., & Nasang, J. M. (2019). Carbon storage potential of cacao agroforestry systems of different age and management intensity. Climate and Development, 11(7), 543–554. https://doi.org/10.1080/17565529.2018.1456895
Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., Pussinen, A., de Jong, B. H. J., & Mohren, G. M. J. (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecological Modelling, 164(2–3), 177–99. https://doi.org/10.1016/S0304-3800(02)00419-2
Masuhara, A., Valdés, E., Pérez J., Gutiérrez, D., Vázquez, J. C., Salcedo, E., Juárez, M. J., & Merino, A. (2015). Carbono almacenado en diferentes sistemas agroforestales de café en Huatusco, Veracruz, México. Revista Amazónica Ciencia y Tecnología, 4(1), 66–93. https://dialnet.unirioja.es/servlet/articulo?codigo=5271975
Návar Cháidez, J. J., González, N., & Graciano, J. (2005). Carbon stocks and fluxes in reforestated sites of Durango, Mexico. Madera y Bosques, 11(2), 15–34. https://doi.org/10.21829/myb.2005.1121254
Negash, M., & Kanninen, M. (2015). Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agriculture, Ecosystems and Environment, 203, 147–155. http://doi.org/10.1016/j.agee.2015.02.004
Negash, M., Starr, M., & Kanninen M. (2013). Allometric Equations for biomass estimation of Enset (Ensete Ventricosum) grown in indigenous agroforestry systems in the Rift Valley escarpment of southern-eastern Ethiopia. Agroforestry Systems, 87, 571–81. https://doi.org/10.1007/s10457-012-9577-6
Nunes de Melo, L., Feitosa de Souza, T. A., & Santos, D., (2019). Transpiratory rate, biomass production and leaf macronutrient content of different plant species cultivated on a regosol in the Brazilian Semiarid. Russian Agricultural Sciences, 45(2), 147–153. https://doi.org/10.3103/S1068367419020150
Nyombi, K., van Asten, P. J. A., Leffelaar, P. A., Corbeels, M., Kaizzi, C. K., & Giller, K. E. (2009). Allometric growth relationships of East Africa highland bananas (Musa AAA-EAHB) Cv. Kisansa and Mbwazirume. Annals of Applied Biology, 155(3), 403–418. https://doi.org/10.1111/j.1744-7348.2009.00353.x
Ordóñez Díaz, J. A. B., Galicia Naranjo, A., Venegas Mancera, N. J., Hernández Tejeda, T., Ordóñez Díaz, M. J., & Dávalos-Sotelo, R. (2015). Densidad de las maderas mexicanas por tipo de vegetación con base en la clasificación de J. Rzedowski: compilación. Madera y Bosques, 21, 77–126. https://doi.org/10.21829/myb.2015.210428
Organización de Naciones Unidas para la Alimentación y la Agricultura., & Unión Internacional de Ciencias del Suelo. (2015). Base referencial mundial del recurso suelo 2014. Sistema internacional de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. FAO. https://www.fao.org/3/i3794es/I3794ES.pdf
Ortiz-Ceballos, G. C., Vargas-Mendoza, M., Ortiz-Ceballos, A. I., Mendoza Briseño, M., & Ortiz-Hernández, G. (2020). Aboveground carbon storage in coffee agroecosystems: The case of the central region of the state of Veracruz in Mexico. Agronomy, 10(3), Article 382. https://doi.org/10.3390/agronomy10030382
Parada-Molina, P. C., Cerdán, C. R., Ortiz Ceballos, G., Barradas Miranda, V. L., & Cervantes-Pérez, J. (2020). Hemileia vastatrix : una prospección ante el cambio climático. Ecosistemas y Recursos Agropecuarios, 7(3), Artículo e2507. https://doi.org/10.19136/era.a7n3.2507
Parada-Molina, P. C., Cervantes-Pérez, J., Ruiz-Molina, V. E., & Cerdán-Cabrera, C. R. (2020). Efectos de la variabilidad de la precipitación en la fenología del café: caso zona cafetalera Xalapa-Coatepec, Veracruz, Mex. Revista Ingeniería y Región, 24, 61–71. https://doi.org/10.25054/22161325.2752
Rahn, E., Vaast, P., Läderach, P., van Asten, P., Jassogne, L., & Ghazoul, J. (2018). Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecological Modelling, 371, 76–89. https://doi.org/10.1016/j.ecolmodel.2018.01.009
Ruiz-García, P., Conde-Álvarez, C., Gómez-Díaz, J. D., & Monterroso-Rivas, A. I. (2021). Projections of local knowledge-based adaptation strategies of mexican coffee farmers. Climate, 9(4), Article 60. https://doi.org/10.3390/cli9040060
Ruiz-García, P., Gómez-Díaz, J. D., Valdes-Velarde, E., Tinoco-Rueda, J. A., Flores-Ordoñez, M., & Monterroso-Rivas, A. I. (2020). Caracterización biofísica y de composición estructural en sistemas agroforestales de café orgánico de Veracruz. Tropical and Subtropical Agroecosystems, 23(2), Artículo 37. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3102/1415
Salgado-Mora, M. G., Ruiz-Bello, C., Moreno-Martínez, J. L., Irena-Martínez, B., & Aguirre-Medina, J. F. (2018). Captura de carbono en biomasa áerea de árboles de sombra asociados a Coffea arabica L. en el Soconusco Chiapas, México. AgroProductividad, 11(2), 120–126. https://revista-agroproductividad.org/index.php/agroproductividad/article/view/136
Schelhaas, M. J., van Esch, P. W., Groen, T. A., de Jong, B. H. J., Kanninen, M., Liski, J., Masera, O., Mohren, G. M. J., Nabuurs, G. J., Palosuo, T., Pedroni, L., Vallejo, A., & Vilén, T. (2004). CO2FIX V 3.1 - a modelling framework for quantifying carbon sequestration in forest ecosystems. Wageningen University. https://library.wur.nl/WebQuery/wurpubs/fulltext/43524
Segura, M., Kanninen, M., & Suárez D. (2006). Allometric models for estimating aboveground biomass of shade trees and coffee bushes grown together. Agroforestry Systems, 68, 143–50. https://doi.org/10.1007/s10457-006-9005-x
Solis, R., Vallejos-Torres, G., Arévalo, L., Marín-Díaz, J., Ñique-Alvarez, M., Engedal, T., & Bruun, T. (2020). Carbon stocks and the use of shade trees in different coffee growing systems in the Peruvian Amazon. The Journal of Agricultural Science, 158(6), 450–460. https://doi.org/10.1017/S002185962000074X
Soto-Pinto, L., & Aguirre-Dávila, C. M. (2015). Carbon stocks in organic coffee systems in Chiapas, Mexico. Journal of Agricultural Science, 7(1), 117–128. https://doi.org/10.5539/jas.v7n1p117
Tschora, H., & Cherubini, F. (2020). Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Global Ecology and Conservation, 22, Article e00919. https://doi.org/10.1016/j.gecco.2020.e00919
Unidad de Informática para las Ciencias Atmosféricas y Ambientales. (2020). Actualización de los escenarios de cambio climático para estudios de impactos, vulnerabilidad y adaptación. Instituto de Ciencias en la Atmósfera y Cambio Climático. http://atlasclimatico.unam.mx/AECC/servmapas
Zaro, G. C., Caramori, P. H., Yada Junior, G. M., Sanquetta, C. R., Androcioli Filho, A., Nunes, A. L. P., Prete, C. E. C., & Voroney, P. (2020). Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry Systems, 94, 799–809. https://doi.org/10.1007/s10457-019-00450-z
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).