Does the oil palm (Elaeis guineensis) generate a negative impact on the soil? A review

Authors

DOI:

https://doi.org/10.15517/am.v34i1.50301

Keywords:

soil organisms, soil degradation, soil conservation, soil fertility

Abstract

Introduction. Oil palm (Elaeis guineensis) is one of the perennial monocultures that has spread to almost a little more than nineteen million hectares in the world. Its expansion has generated social, economic, and political debate in various tropical countries. One of the problems that has been discussed is the impact on the physicochemical, biological, and ecological properties of the soil. Objective. (i) To provide a current overview of the expansion of oil palm cultivation in an area of the Soconusco region, Chiapas, Mexico, (ii) to document the effects caused by oil palm on the physicochemical and biological properties of the soil, and (iii) to present some proposals for management practices to increase the fertility and abundance of soil macroinvertebrates. Development. The search for keywords was carried out in the “topics” section within the “Web of Science” database from the year 2009 to March 2018. Research that relates the cultivation of oil palm with physical parameters, soil chemicals, and biology was consulted. The literature demonstrates the negative effects generated by oil palm monoculture on some physicochemical properties of the soil and the ecology and biology of the edaphic macrofauna. Conclusion. Evidence is show that the poor management of oil palm monoculture has environmental implications. The integration of good sustainable management practices could mitigate damage to the soil.

Downloads

Download data is not yet available.

References

Abram, N. K., Xofis, P., Tzanopoulos, J., MacMillan, D. C., Ancrenaz, M., Chung, R., Peter, L., Ong, R., Lackman, I., Goossens, B., Ambu, L., & Knight, A. T. (2014). Synergies for improving oil palm production and forest conservation in floodplain landscapes. PLoS ONE, 9(6), Article e95388. https://doi.org/10.1371/journal.pone.0095388

Abubakar, A., Yusoff Ishak, M. & Ahmad Makmom, A. (2022). Nexus between climate change and oil palm production in Malaysia: a review. Environmental Monitoring and Assessment, 194, Article 262. https://doi.org/10.1007/s10661-022-09915-8

Akinyele, S. A., & Fatoye, O. A. (2013). Effect of oil palm effluents and fiber on selected soil properties, carbon, nitrogen, potassium and phosphorous. IOSR Journal of Environmental Science, Toxicology and Food Technology, 6(2), 5–7. https://bit.ly/3GPk3gu

Akinde, B. P., Olakayode, A. O., Oyedele, D. J., & Tijani, F. O. (2020). Selected physical and chemical properties of soil under different agricultural land-use types in Ile-Ife, Nigeria. Heliyon, 6(9), Article e05090. https://doi.org/10.1016/j.heliyon.2020.e05090

Akram, H., Levia, D. F., Herrick, J. E., Lydiasari, H., & Schütze, N. (2022). Water requirements for oil palm grown on marginal lands: A simulation approach. Agricultural Water Management, 260, Article 107292. https://doi.org/10.1016/j.agwat.2021.107292

Al-Esawi, J. S. E., Wayayok, A., Al-Ogaidi, A. A., Rowshon, M. K., Fikri Abdullah, A., & Abdullahi, S. (2021). Effect of soil compaction and palm oil application on soil infiltration rate. Journal of Irrigation and Drainage Engineering, 147(3), Article 04020044. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001534

Anyaoha, K. E., Sakrabani, R., Patchigolla, K., & Mouazen, A. M. (2018). Critical evaluation of oil palm fresh fruit bunch solid wastes as soil amendments: Prospects and challenges. Resources, Conservation and Recycling, 136, 399–409. https://doi.org/10.1016/j.resconrec.2018.04.022

Ashton-Butt, A., Willcock, S., Purnomo, D., Suhardi, Aryawan, A. A., Wahyuningsih, R., Naim, M., Poppy G. M., Caliman J. P., Peh K. S. H., & Snaddon, J. L. (2019). Replanting of first-cycle oil palm results in a second wave of biodiversity loss. Ecology and Evolution, 9(11), 6433–6443. https://doi.org/10.1002/ece3.5218

Astier-Calderón, M., Maass-Moreno, M., & Etchevers-Barra, J. (2002). Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia, 36(5), 605–620. https://bit.ly/3OxTuOW

Azhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. Journal of Environmental Management, 203, 457–466. https://doi.org/10.1016/j.jenvman.2017.08.021

Barnes, A. D., Jochum, M., Mumme, S., Haneda, N. Farikhah Farajallah, A., Heru Widarto, T., & Brose, U. (2014). Consequences of tropical land use for multitrophic biodiversity and ecosystem functioning. Nature Communications, 5, Article 6351. https://doi.org/10.1038/ncomms6351

Barrios-Maestre, R., Fariñas, J., Silva-Acuña, R., & Sanabria, D. (2011). Comportamiento de cinco especies de leguminosas como cobertura viva en palma aceitera en el estado Monagas, Venezuela. Idesia, 29(2), 29–37. https://idesia.uta.cl/index.php?option=com_volumenes&view=d&aid=643&vid=45

Basri Wahid, M. B., Akmar Abdullah, S. N., & Henson, I. E. (2005). Oil palm-achievements and potential. Plant Production Science, 8(3), 288–297. https://doi.org/10.1626/pps.8.288

Baumgartner, D. U., de Baan, L., Nemecek, T., Pressenda, F., & Crépon, K. (2008, November 12–14). Life cycle assessment of feeding livestock with European grain legumes [Conference session]. Proceedings of the 6th international conference on Life Cycle Assessment in the Agri-Food Sector. Zurich, Switzerland. https://edepot.wur.nl/8243

Behera, S. K., Shukla, A. K., Suresh, K., Manorama, K., Mathur, R. K., Kumar, A., Harinarayana, P., Prakash, C., & Tripathi, A. (2020). Oil palm cultivation enhances soil pH, electrical conductivity, concentrations of exchangeable calcium, magnesium and available sulphur and soil organic carbon content. Land Degradation & Development, 31, 2789–2803. https://doi.org/10.1002/ldr.3657

Bessou, C., & Marichal, R. (2015). Soil fertility, evolving concepts and assessments. In M. J. Webb, P. N. Nelson, C. Bessou, J. P. Caliman, & E. S. Sutarta (Eds.), Sustainable management of soil in oil palm plantings: Proceedings of a workshop held in Medan, Indonesia (pp. 53–59). Australian Center for International Agricultural Research. https://agritrop.cirad.fr/579051/7/chap_579051.pdf

Bessou, C., Verwilghen, A., Beaudouin-Ollivier, L., Marichal, R., Ollivier, J., Baron, V., Bonneau, X., Carron, M.P., Snoeck, D., Naim, M., & Caliman, J. P. (2017). Agroecological practices in oil palm plantations: examples from the field. Oilseeds and Fats Crops and Lipids, 24(3), Article D305. https://doi.org/10.1051/ocl/2017024

Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food & Agriculture Organization of the United Nations. http://www.fao.org/3/a0100e/a0100e00.htm#Contents

Cámara de Diputados (2011, mayo 04). Acuerdo por el que se emiten los lineamientos específicos para la operación del proyecto transversal trópico húmedo. Diario Oficial de la Federación. http://www.dof.gob.mx/nota_detalle.php?codigo=5188289&fecha=04/05/2011

Carlson, K. M., Curran, L. M., Ratnasari, D., Pittman, A. M., Soares-Filho, B. S., Asner, G. P., Trigg, S.N., Gaveau, D.A., Lawrence, D., & Rodrigues, H. O. (2012). Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proceedings of the National Academy of Sciences, 109(19), 7559–7564. https://doi.org/10.1073/pnas.1200452109

Carron, M. P., Auriac, Q., Snoeck, D., Villenave, C., Blanchart, E., Ribeyre, F., Marichal, R., Darminto, M., & Caliman, J. P. (2015). Spatial heterogeneity of soil quality around mature oil palms receiving mineral fertilization. European Journal of Soil Biology, 66, 24–31. https://doi.org/10.1016/j.ejsobi.2014.11.005

Carron, M. P., Pierrat, M., Snoeck, D., Villenave, C., Ribeyre, F., Marichal, R., & Caliman, J. P. (2015). Temporal variability in soil quality after organic residue application in mature oil palm plantations. Soil Research, 53(2), 205–215. https://doi.org/10.1071/SR14249

Choo, Y. M., Muhamad, H., Hashim, Z., Subramaniam, V., Puah, C. W., & Tan, Y. (2011). Determination of GHG contributions by subsystems in the oil palm supply chain using the LCA approach. The International Journal of Life Cycle Assessment, 16(7), 669–681. https://doi.org/10.1007/s11367-011-0303-9

Comte, I., Colin, F., Whalen, J. K., Grünberger, O., & Caliman, J. P. (2012). Agricultural practices in oil palm plantations and their impact on hydrological changes, nutrient fluxes and water quality in Indonesia: a review. Advances in Agronomy, 116, 71–124. https://doi.org/10.1016/B978-0-12-394277-7.00003-8

Coutris, C., Joner, E. J, & Oughton, D. H. 2012. Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Science of the Total Environment, 420, 327–333. https://doi.org/10.1016/j.scitotenv.2012.01.027

Craven, C. (2011). The Honduran palm oil industry: Employing lessons from Malaysia in the search for economically and environmentally sustainable energy solutions. Energy Policy, 39(11), 6943–6950. https://doi.org/10.1016/j.enpol.2010.09.028

da Silva Maia, R., Silva Vasconcelos, S., Barbosa Viana-Junior, A., Castellani, D. C., & Ryohei Cato, O. (2021). Oil palm (Elaeis guineensis) shows higher mycorrhizal colonization when planted in agroforestry than in monoculture. Agroforestry Systems, 95, 731–740. https://doi.org/10.1007/s10457-021-00627-5

Dhandapani, S., Girkin, N. T., Evers, S., Ritz, K., & Sjögersten, S. (2020). Is Intercropping an Environmentally-Wise Alternative to Established Oil Palm Monoculture in Tropical Peatlands? Frontiers in Forest and Global Change, 3, Article 70. https://doi.org/10.3389/ffgc.2020.00070

Dhandapani, S., Ritz, K., Evers, S., & Sjögersten, S. (2019). Environmental impacts as affected by different oil palm cropping systems in tropical peatlands. Agriculture. Ecosystems & Environment, 276, 8–20. https://doi.org/10.1016/j.agee.2019.02.012

Dislich, C., Keyel, A. C., Salecker, J., Kisel, Y., Meyer, K. M., Auliya, M., Barnes, A.D., Corre, M.D., Darras, K., Faust, H., Hess, B., Klasen, S., Knohl, A., Kreft, H., Meijide, A., Nurdiansyah, F., Otten, F., Pe’er, G., Steinebach, S., Tarigan, S., Tôle, M. H., Tscharntke, T., & Wiegand, K. (2017). A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 92(3), 1539–1569. https://doi.org/10.1111/brv.12295

Ebana, R. U. B., Edet, U. O., Ekanemesang, U. M., & Effiong, O. O. (2017). Physicochemical characterization of palm mill oil effluent and bioremediation of impacted soil. Asian Journal of Environment & Ecology, 2(1), 1–9. https://doi.org/10.9734/AJEE/2017/31221

Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & Phalan, B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology & Evolution, 23(10), 538–545. http://doi.org/10.1016/j.tree.2008.06.012

Fletes-Ocón, H. B., & Bonanno, A. (2015). Respuestas a la crisis de la globalización neoliberal: intervención del Estado en la producción de aceite de palma en Chiapas, México. Carta Económica Regional, 27(116), 5–35. https://bit.ly/3tW8DQC

Formaglio, G., Veldkamp, E., Damris, M., Tjoa, A., & Corre, M. D. (2021). Mulching with pruned fronds promotes the internal soil N cycling and soil fertility in a large-scale oil palm plantation. Biogeochemistry, 154, 63–80. https://doi.org/10.1007/s10533-021-00798-4

Foster, W. A., Snaddon, J. L., Turner, E. C., Fayle, T. M., Cockerill, T. D., Farnon Ellwood, M. D., Broad, G. R., Chung, A. Y. C., Eggleton, P., Vun Khen, C., & Yusah, K. M. (2011). Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philosophical Transactions of the Royal Society B, 366(1582), 3277–3291. https://doi.org/10.1098/rstb.2011.0041

Furumo, P. R., & Mitchell Aide, T. M. (2017a). Caracterización de la expansión de la palma de aceite para uso comercial en América Latina: cambio en el uso del suelo y comercialización. Revista Palmas, 38(2), 27–48. https://publicaciones.fedepalma.org/index.php/palmas/article/view/12123

Furumo, P. R., & Mitchell Aide, T. M. (2017b). Characterizing commercial oil palm expansion in Latin America: land use change and trade. Environmental Research Letters, 12(2), Article 024008. https://doi.org/10.1088/1748-9326/aa5892

Goh, K. J., Mahamooth, T. N., Patrick, N. H. C., Teo, C. B., & Liew, Y. A. (2016). Managing soil environment & its major impact on oil palm nutrition & productivity in Malaysia. Sarawak Oil Palm Plantation Owners Association. http://soppoa.org.my/wp-content/uploads/2016/12/MEOA_Topic_2_Dr_Liew.pdf

Gomes, M. F., Vasconcelos, S. S., Viana-Junior, A. B., Costa, A. N. M., Barros, P. C., Ryohei Kato, O., & Castellani, D. C. (2021). Oil palm agroforestry shows higher soil permanganate oxidizable carbon than monoculture plantations in Eastern Amazonia. Land Degradation & Development, 32(15), 4313–4326. https://doi.org/10.1002/ldr.4038

Google Earth. (2020). Áreas de palma de aceite en la localidad el Arenal en el municipio de Acapetahua, Soconusco, Chiapas, México. https://earth.google.com

Gray, C. L., & Lewis, O. T. (2014). Do riparian forest fragments provide ecosystem services or disservices in surrounding oil palm plantations? Basic and Applied Ecology, 15(8), 693–700. https://doi.org/10.1016/j.baae.2014.09.009

Gray, C. L., Simmons, B. I., Fayle, T. M., Mann, D. J., & Slade, E. M. (2016). Are riparian forest reserves sources of invertebrate biodiversity spillover and associated ecosystem functions in oil palm landscapes? Biological Conservation, 194, 176–183. https://doi.org/10.1016/j.biocon.2015.12.017

Iyakndue, M. L., Brooks, A. A., Unimke, A. A., & Agbo, B. E. (2017). Effects of palm oil mill effluent on soil microflora and fertility in Calabar–Nigeria. Asian Journal of Biology, 2(3), 1–11. https://doi.org/10.9734/AJOB/2017/33015

Khatun, R., Hasan Reza, M. I., Moniruzzaman, M., & Yaakob, Z. (2017). Sustainable oil palm industry: The possibilities. Renewable and Sustainable Energy Reviews, 76, 608–619. https://doi.org/10.1016/j.rser.2017.03.077

Kurniawan, S., Corre, M.D., Rahayu Utami, S., & Veldkamp, E. (2018). Soil biochemical properties and nutrient leaching from smallholder oil palm plantations, Sumatra-Indonesia. AGRIVITA journal Agricultural Science, 40(2), 257–266. https://doi.org/10.17503/agrivita.v40i2.1723

Lahmar, R., & Ruellan, A. (2007). Dégradation des sols et stratégies coopératives en Méditerranée : la pression sur les ressources naturelles et les stratégies de développement durable. Cahiers Agricultures, 16(4), 318–323. https://doi.org/10.1684/agr.2007.0119

Larson, W. E., & Pierce, F. J. (1991, September 15-21). Conservation and enhancement of soil quality [Conference session]. Proceedings of the International Workshop on Evaluation for Sustainable Land Management in the Developing World. Chiang Rai, Thailand.

Lavelle, P., & Spain, A. V. (2001). Soil ecology. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48162-6

Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., Lin, Z. & Wang, H. (2018). Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. Journal of Soils and Sediments, 18, 546–563. https://doi.org/10.1007/s11368-017-1906-y

Ling Lau, S. Y., Midot, M., Peter Dom, S., Lieng Lo, M., Chin, M. -Y., Sie Jee, M., Lan Yap, M., Chaddy, A., & Melling. L. (2022). Application of ammonium sulfate affects greenhouse gases and microbial diversity of an oil palm plantation on tropical peat. Archives of Agronomy and Soil Science, 2022, Article 650. https://doi.org/10.1080/03650340.2021.2022650

Lucey, J. M., Tawatao, N., Senior, M. J., Chey, V. K., Benedick, S., Hamer, K. C., Woodcock, P. Newton, R., Bottrell, R. J., & Hill, J. K. (2014). Tropical forest fragments contribute to species richness in adjacent oil palm plantations. Biological Conservation, 169, 268–276. https://doi.org/10.1016/j.biocon.2013.11.014

Manorama, K., Behera, S. K., Suresh, K., Prasad, M. V., Mathur, R. K., & Harinarayana, P. (2021). Mulching and technological interventions avoid land degradation in an intensive oil palm (Elaeis guineensis Jacq.) production system. Land Degradation & Development, 32(13), 3785–3797. https://doi.org/10.1002/ldr.3886

Mardegan, S. F., de Castro, A. F., Noirtin Freitas Chaves, S. S., dos Santos Freitas, R. S., Sena Avelar, M., & Oliveira Teixeira Filho, F. A. (2022). Organic Farming Enhances Soil Carbon and Nitrogen Dynamics in Oil Palm Crops from Southeast Amazon. Soil Science and Plant Nutrition, 68(1), 104–113. https://doi.org/10.1080/00380768.2022.2031285

Mercer, E. V., Mercer, T. G., & Sayok, A. K. (2014). Effects of forest conversions to oil palm plantations on freshwater macroinvertebrates: a case study from Sarawak, Malaysia. Journal of Land Use Science, 9(3), 260–277. https://doi.org/10.1080/1747423X.2013.786149

Mesa-Pérez, M. A., Echemendía-Pérez, M., Valdés-Carmenate, R., Sánchez-Elías, S., & Guridi-Izquierdo, F. (2016). La macrofauna edáfica, indicadora de contaminación por metales pesados en suelos ganaderos de Mayabeque, Cuba. Pastos y Forrajes, 39(3), 116–124. https://bit.ly/3GGs0Vn

Moebius, B. N., van Es, H. M., Schindelbeck, R. R., Idowu, O. J., Clune, D. J., & Thies, J. E. (2007). Evaluation of laboratory-measured soil properties as indicators of soil physical quality. Soil science, 172(11), 895–912. https://doi.org/10.1097/ss.0b013e318154b520

Moreno-Peñaranda, R., Gasparatos, A., Stromberg, P., Suwa, A., Hadi Pandyaswargo, A., & Puppim de Oliveira, J. A. (2015). Sustainable production and consumption of palm oil in Indonesia: What can stakeholder perceptions offer to the debate? Sustainable Production and Consumption, 4, 16–35. https://doi.org/10.1016/j.spc.2015.10.002

Nadeesha, S., & Weerasinghe T. K. (2016). Effects of oil palm cultivation on the properties of soil in some selected areas of Nagoda divisional secretariat in the Galle district, Sri Lanka. International Journal of Agriculture, Forestry and Plantation, 3, 114–118.

Neumann, D., Heuer, A., Hemkemeyer, M., Martens, R., & Tebbe, C. C. (2014). Importance of soil organic matter for the diversity of microorganism involved in the degradation of organic pollutants. The ISME Journal, 8, 1289–1300. https://doi.org/10.1038/ismej.2013.233

Nwoko, C.I.A., & Ukiwe, L.N. (2016). Physicochemical characteristics of soils treated with palm oil mill effluent in three localities in Imo State, Nigeria. Pure and Applied Chemical Sciences, 4(1), 1–8. http://doi.org/10.12988/pacs.2016.5127

Ocampo-Peñuela, N., Garcia-Ulloa, J., Ghazoul, J., & Etter, A. (2018). Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biological Conservation, 224, 117–121. https://doi.org/10.1016/j.biocon.2018.05.024

Ogedegbe, O. B. A., & Egwuonwu, I. C. (2014). Biodiversity of soil arthropods in Nigerian Institute for oil palm research (NIFOR), Nigeria. Journal of Applied Sciences and Environmental Management, 18(3), 377–386. https://www.ajol.info/index.php/jasem/article/view/109849

Ogeh, J. S., & Osiomwan, G. E. (2012). Evaluation of the Effect of Oil Palm on some Physical and Chemical Properties of Rhodic paleudults. Nigerian Journal of Basic and Applied Sciences, 20(1), 78–82. https://www.ajol.info/index.php/njbas/article/view/81592

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2019). FAOSTAT, datos. http://www.fao.org/faostat/es/#data

Paing Tan, N., Keng Wong, M., Yusuyin, Y., Bin Abdu, A., Iwasaki, K., & Tanaka, S. (2014). Soil characteristics in an oil palm field, Central Pahang, Malaysia with special reference to micro sites under different managements and slope positions. Tropical Agriculture Development, 58(4), 146–154. https://doi.org/10.11248/jsta.58.146

Pardo Vargas, L. E., Laurance, W. F., Reuben Clements, G., & Edwards, W. (2015). The impacts of oil palm agriculture on Colombia’s biodiversity: what we know and still need to know. Tropical Conservation Science, 8(3), 828–845. https://doi.org/10.1177/194008291500800317

Pardon, L., Bessou, C., Netelenbos Nelson, P., Dubos, B., Ollivier, J., Marichal, R., Caliman, J. P., & Gabrielle, B. (2016). Key unknowns in nitrogen budget for oil palm plantations. A review. Agronomy for Sustainable Development, 36, Article 20. https://doi.org/10.1007/s13593-016-0353-2

Paterson, R. R. M., & Lima, N. (2017). Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration. Ecology and Evolution, 8(1), 452–461. https://doi.org/10.1002/ece3.3610

Paterson, R. R. M., Kumar, L., Shabani, F., & Lima, N. (2017). World climate suitability projections to 2050 and 2100 for growing oil palm. The Journal of Agricultural Science, 155(5), 689–702. https://doi.org/10.1017/S0021859616000605

Pereira Mendes, T., Loureiro Benone, N., & Juen, L. (2019). To what extent can oil palm plantations in the Amazon support assemblages of Odonata larvae? Insect Conservation and Diversity, 12(5), 448–458. https://doi.org/10.1111/icad.12357

Pirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the limits to oil palm expansion? Global Environmental Change, 40, 73–81. https://doi.org/10.1016/j.gloenvcha.2016.06.007

Potapov, A. M., Klarner, B., Sandmann, D., Widyastuti, R., & Scheu, S. (2019). Linking size spectrum, energy flux and trophic multifunctionality in soil food webs of tropical land-use systems. Journal of Animal Ecology, 88(12), 1845–1859. https://doi.org/10.1111/1365-2656.13027

Potapov, A., Schaefer, I., Jochum, M., Widyastuti, R., Eisenhauer, N., & Scheu, S. (2021). Oil palm and rubber expansion facilitates earthworm invasion in Indonesia. Biological Invasions, 23, 2783–2795. https://doi.org/10.1007/s10530-021-02539-y

Pulido-Moncada, M., Lozano, Z., Delgado, M., Dumon, M., Van Ranst, E., Lobo, D., Gabriels, D., & Cornelis, W. M. (2018). Using soil organic matter fractions as indicators of soil physical quality. Soil Use and Management, 34(2), 187–196. https://doi.org/10.1111/sum.12414

Rahman, N., Giller, K. E., de Neergaard, A., Magid, J., van de Ven, G., & Bech Bruun, T. (2021). The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. Journal of Environmental Management, 278, Article 111446. https://doi.org/10.1016/j.jenvman.2020.111446

Roundtable on Sustainable Palm Oil. (2018). Principles and criteria for sustainable palm oil production. https://rspo.org/library/lib_files/preview/1079

Sahat, S., Yusop, Z., Askari, M., & Ziegler, A. D. (2016). Estimation of soil erosion rates in oil palm plantation with different land cover. IOP Conference Series: Materials Science and Engineering, 136, Article 012086. https://doi.org/10.1088/1757-899X/136/1/012086

Sahid, I., Hamzah, A., & Aris, P. M. (1992). Effects of paraquat and alachlor on soil microorganisms in peat soil. Pertanika, 15 (2), 121–125. https://core.ac.uk/download/pdf/42990255.pdf

Salamat, S., Hassan, M., Shirai, Y., Mohd. Hanif, A. H., Norizan, M. S., Mohd Zainudin, M. H., Mustapha, N. A., Mat Isa, M. N., & Abu Bakar, M. F. (2021). Effect of inorganic fertilizer application on soil microbial diversity in an oil palm plantation. BioResources, 16(2), 2279–2302. https://bit.ly/3OydReT

Samedani, B., Juraimi, A. S., Rafii, M. Y., Sheikh Awadz, S. A., Anwar, M. P., & Anuar, A. R. (2015). Effect of cover crops on weed suppression in oil palm plantation. International Journal of Agriculture & Biology, 17(2), 251–260. http://fspublishers.org/published_papers/41353_..pdf

Santacruz de León, E. E., Morales Guerrero, S., & Palacio Muñoz, V. E. (2014). Políticas de reconversión productiva de la palma de aceite. In B. Mata García (Ed.), Palma de aceite en México: Política gubernamental e innovación tecnológica (pp. 31–65). Centro de Estudios para el Desarrollo Rural Sustentable y la Soberanía Alimentaria.

Santorufo, L., Van Gestel, C. A., Rocco, A., & Maisto, G. (2012). Soil invertebrates as bioindicators of urban soil quality. Environmental Pollution, 161, 57–63. https://doi.org/10.1016/j.envpol.2011.09.042

Santos da Silva, C. S., Furtado de Mendonça, B. A., Gervasio Pereira, M., Gomes de Araújo, E. J., & Castellani, D. C. (2018). Spatial dependency and correlation of properties of soil cultivated with oil palm, Elaeis guineensis, in agroforestry systems in the eastern Brazilian Amazon. Acta Amazonica, 48(4), 280–289. https://doi.org/10.1590/1809-4392201704423

Satriawan, H., Masrul Harahap, E., Rahmawaty & Karim, A. (2015). Effectiveness of soil conservation to erosion control on several land use types. Agriculture (Pol’nohospodárstvo), 61(2), 61–68. https://sciendo.com/article/10.1515/agri-2015-0011

Savilaakso, S., Garcia, C., Garcia-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., Laumonier, Y., Nasi, R., Petrokofsky, G., Snaddon, J., & Zrust, M. (2014). Systematic review of effects on biodiversity from oil palm production. Environmental Evidence, 3, Article 4. https://doi.org/10.1186/2047-2382-3-4

Sheil, D., Casson, A., Meijaard, E., van Noordwjik, M., Gaskell, J., Sunderland-Groves, J., Wertz, K., & Kanninen, M. (2009). The impacts and opportunities of oil palm in Southeast Asia: What do we know and what do we need to know?. Center for International Forestry Research. https://doi.org/10.17528/cifor/002792

Servicio de Información Agroalimentaria y Pesquera. (2019). Anuario estadístico de la producción agrícola. https://nube.siap.gob.mx/cierreagricola/

Singh, R. P., Embrandiri, A., Ibrahim, M. H., & Esa, N. (2011). Management of biomass residues generated from palm oil mill: Vermicomposting a sustainable option. Resources, Conservation and Recycling, 55(4), 423–434. https://doi.org/10.1016/j.resconrec.2010.11.005

Singh, R. P., Hakimi Ibrahim, M. H., Esa, N., & Iliyana, M. S. (2010). Composting of waste from palm oil mill: a sustainable waste management practice. Reviews in Environmental Science and Bio/Technology, 9, 331–344. https://doi.org/10.1007/s11157-010-9199-2

Sivakumar, M. V. K., & Stefanski, R. (2007). Climate and land degradation – An overview. In M. V. K. Sivakumar, & N. Ndiang’ui (Eds.), Climate and land degradation (pp. 105–135). Springer. https://doi.org/10.1007/978-3-540-72438-4_6

Subramaniam, V., Hashim, Z., Kheang Loh, S., & Aziz Astimar, A. (2020). Assessing water footprint for the oil palm supply chain- a cradle to gate study. Agricultural Water Management, 237, Article 106184. https://doi.org/10.1016/j.agwat.2020.106184

Tao, H. H., Slade, E. M., Willis, K. J., Caliman, J. P., & Snaddon, J. L. (2016). Effects of soil management practices on soil fauna feeding activity in an Indonesian oil palm plantation. Agriculture, Ecosystems & Environment, 218, 133–140. https://doi.org/10.1016/j.agee.2015.11.012

Tao, H. H., Snaddon, J. L., Slade, E. M., Caliman, J. P., Widodo, R. H., & Willis, K. J. (2017). Long-term crop residue application maintains oil palm yield and temporal stability of production. Agronomy for Sustainable Development, 37, Article 33. https://doi.org/10.1007/s13593-017-0439-5

Tao, H. H., Snaddon, J. L., Slade, E. M., Henneron, L., Caliman, J. P., & Willis, K. J. (2018). Application of oil palm empty fruit bunch effects on soil biota and functions: A case study in Sumatra, Indonesia. Agriculture, Ecosystems & Environment, 256, 105–113. https://doi.org/10.1016/j.agee.2017.12.012

Teuscher, M., Gérard, A., Brose, U., Buchori, D., Clough, Y., Ehbrecht, M., Hölscger, D., Irawan, B., Sundawati, L., Wollni, M., & Kreft, H. (2016). Experimental biodiversity enrichment in oil-palm-dominated landscapes in Indonesia. Frontiers in Plant Science, 7, Article 1538. https://doi.org/10.3389/fpls.2016.01538

Tuma, J., Fleiss, S., Eggleton, P., Frouz, J., Klimes, P., Lewis, O. T. Yusah, K. M., & Fayle, T. M. (2019). Logging of rainforest and conversion to oil palm reduces bioturbator diversity but not levels of bioturbation. Applied Soil Ecology, 144, 123–133. https://doi.org/10.1016/j.apsoil.2019.07.002

Vallejo-Quintero, V. E. (2013). Importancia y utilidad de la evaluación de la calidad de suelos mediante el componente microbiano: experiencias en sistemas silvopastoriles. Colombia Forestal, 16(1), 83–99. https://doi.org/10.14483/udistrital.jour.colomb.for.2013.1.a06

Velázquez-González, I. U., Pérez-Hernández, H., Sañudo-Torres, R. R., Ruelas-Ayala, R. D., & Felix-Herrán, J. A. (2013). Impacto del cultivo de palma de aceite (Elaeis guineensis Jacq.) sobre las propiedades físicas y químicas del suelo en la localidad de la Alianza, Mapastepec, Chiapas. Revista Forestal Baracoa, 32(2), 86–91.

Vijay, V., Pimm, S. L., Jenkins, C. N., & Smith, S. J. (2016). The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE, 11(7), Article e0159668. https://doi.org/10.1371/journal.pone.0159668

Vinhal-Freitas, I. C., Corrêa, G. F., Wendling, B., Bobuľská, L., & Ferreira, A. S. (2017). Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators. Ecological Indicators, 74, 182–190. https://doi.org/10.1016/j.ecolind.2016.11.020

Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B., & Pin Koh, L. (2013). Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends in Ecology & Evolution, 28(9), 531–540. https://doi.org/10.1016/j.tree.2013.04.005

Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002

Zainuddin, N., Fahmi Keni, M., Syed Ibrahim, S. A., & Mohd Masri, M. M. (2022). Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatalysis and Agricultural Biotechnology, 39, Article 102237. https://doi.org/10.1016/j.bcab.2021.102237

Published

2022-12-06

How to Cite

Pérez Hernández, H., & Pérez Sato, M. (2022). Does the oil palm (Elaeis guineensis) generate a negative impact on the soil? A review. Agronomía Mesoamericana, 34(1), 50301. https://doi.org/10.15517/am.v34i1.50301