Effect of Bacillus amyloliquefaciens and Pseudomonas migulae on the growth of gooseberry (Physalis peruviana L.) seedlings

Rizobacterias promotoras en plántulas de uchuva (Physalis peruviana L.).

Authors

  • Camilo Rubén Beltrán-Acosta Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Cundinamarca, Colombia
  • Yimmy Alexander Zapata Narváez, Sr. AGROSAVIACorporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Cundinamarca, Colombia http://orcid.org/0000-0002-7586-209X
  • Duván Albeiro Millán Montaño, Sr. Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Cundinamarca, Colombia http://orcid.org/0000-0001-5493-9177
  • Andrés Díaz García, Sr. Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Cundinamarca, Colombia http://orcid.org/0000-0002-8638-7968

DOI:

https://doi.org/10.15517/am.v34i1.50669

Keywords:

rhizobacteria, endophytes, biomass, Solanaceae

Abstract

Introduction. The use of plant growth-promoting bacteria can be an alternative to be integrated as a management strategy of cape gooseberry crop through their incorporation in seedling stages, allowing to obtain more vigorous seedlings that can tolerate biotic and abiotic stress at the time of transplant. Objective. To evaluate the plant growth promoting activity and endophytic capacity of Bacillus amyloliquefaciens Bs006 and Pseudomonas migulae Pf014 inoculated during the seedling stage of cape gooseberry (Physalis peruviana L.). Materials and methods. In a randomized complete block design with three replications, an experiment was carried out from April to May 2018 in a greenhouse located at the Tibaitatá Research Center, Mosquera, Colombia. Bacteria were inoculated separately in the substrate at 1 x 108 UFC mL-1. Physiological variables such as dry biomass of the root, stem, and leaves (g), final length (cm), leaf area (cm2), and the number of leaves were analyzed; additionally, its endophytism was verified by evaluating the colonization of the plant tissue. Results. B. amyloliquefaciens Bs006 stimulated seedling growth at different levels, exhibiting greater promotion capacity than P. migulae Pf014, since it increased plant length by 34 %, and stem and root growth by 59 % and 16 %, respectively; also, increase in dry root biomass by 178 %, stem by 161 %, and leaves by 96 % was found. In addition, bacteria were isolated from the interior of plant tissues, demonstrating their endophytic behavior. Conclusions. The positive response in all the agronomic variables evaluated with the application of B. amyloliquefaciens Bs006, indicates that this rhizobacterium can be integrated into the cape gooseberry production scheme, helping to enhance crop production.

Downloads

Download data is not yet available.

References

Ambrosini, A., de Souza, R., & Passaglia, L. M. P. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant and Soil, 400(1-2), 193–207. https://doi.org/10.1007/s11104-015-2727-7

Blake, C., Nordgaard Christensen, M., & Kovács, Á. T. (2021). Molecular aspects of plant growth promotion and protection by Bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15–25. https://doi.org/10.1094/MPMI-08-20-0225-CR

Caglar Kaymak, H. C. (2019) Potential of PGPR in Improvement of Environmental-Friendly Vegetable Production. In D. Maheshwari, & S. Dheeman (Eds.), Field crops: Sustainable management by PGPR. Sustainable Development and Biodiversity (Vol. 23, pp. 221–251). Springer, Cham. https://doi.org/10.1007/978-3-030-30926-8_9

Compant, S., Clément, C., & Sessitsch, A. (2010). Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42(5), 669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

Deketelaere, S., Tyvaert, L., França, S. C., & Höfte, M. (2017). Desirable traits of a good biocontrol agent against Verticillium Wilt. Frontiers in Microbiology, 8, Article 1186. https://doi.org/10.3389/fmicb.2017.01186

Díaz, A., Mejía, C., Cruz, L. C., & Sáenz, J. (2012). Producción masiva de rizobacterias. En A. Díaz (Eds.), Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana) (pp. 32–44). Corporación Colombiana de Investigación Agropecuaria. http://hdl.handle.net/20.500.12324/12610

Díaz, A., Smith, A., Mesa, P., Zapata, J., Caviedes, D., & Cotes, A. M. (2013). Control of Fusarium wilt in cape gooseberry by Trichoderma koningiopsis and PGPR. IOBC/WPRS Bulletin, 86, 89–94. https://www.cabdirect.org/cabdirect/abstract/20133172497

Díaz-García, A., García-Riaño, J., & Zapata-Narváez, J. (2015). Improvement of sporulation conditions of a new strain of Bacillus amyloliquefaciens in liquid fermentation. Advances in Bioscience and Biotechnology, 6(4), 302–310. http://doi.org/10.4236/abb.2015.64029

Fischer, G., Almanza-Merchán, P. J., & Miranda, D. (2014). Importancia y cultivo de la uchuva (Physalis peruviana L.). Revista Brasileira de Fruticultura 36(1), 1–15. https://doi.org/10.1590/0100-2945-441/13

Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893

Gámez, R. M., Rodríguez, F., Bernal, J. F., Agarwala, R., Landsman, D., & Mariño-Ramírez, L. (2015). Genome Sequence of the Banana Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens BS006. Genome announcements, 3(6), Article e01391-15. https://doi.org/10.1128/genomeA.01391-15

Grageda-Cabrera, O. A., Díaz-Franco, A., Peña-Cabriales, J. J., & Vera-Nuñez, J. A. (2012). Impacto de los biofertilizantes en la agricultura. Revista Mexicana de Ciencias Agrícolas, 3(6), 1261–1274. https://doi.org/10.29312/remexca.v3i6.1376

Glick, B. R. (2012). Plant Growth-Promoting Bacteria: mechanisms and applications. Scientifica, 2012, Article 963401. https://doi.org/10.6064/2012/963401

Hallmann, J. (2001). Plant interactions with endophytic bacteria. In M. J. Jeger, & N. J. Spence (Eds.), Biotic interactions in plant-pathogen associations (pp. 87–119). CABI Publishing Series. https://doi.org/10.1079/9780851995120.0087

Hallmann J., & Berg, G. (2006). Spectrum and population dynamics of bacterial root endophytes. In B. J. E. Schulz, C. J. C. Boyle, & T. N. Sieber (Eds.), Microbial root endophytes. Soil biology (Vol. 9, pp. 15–31). Springer, Berlin. https://doi.org/10.1007/3-540-33526-9_2

Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., & Kloepper, J. W. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895–914. https://doi.org/10.1139/m97-131

Hamedi, J., & Mohammadipanah, F. (2014). Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. Journal of Industrial Microbiology and Biotechnology, 42(2), 157–171. https://doi.org/10.1007/s10295-014-1537-x

Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463–471. https://doi.org/10.1016/j.tim.2008.07.008

Lodewyckx, C., Vangronsveld, Y., Porteous, F., Moore, E. R. B. Taghavi, S., Mezgeay, M., & van der Lelie, D. (2002). Endophytic Bacteria and Their Potential Applications. Critical Reviews in Plant Sciences, 21(6), 583–606. https://doi.org/10.1080/0735-260291044377

Martínez, F., Sarmiento, J., Fischer, G., & Jiménez, F. (2008). Efecto de la deficiencia de N, P, K, Ca, Mg y B en componentes de producción y calidad de la uchuva (Physalis peruviana L.). Agronomía Colombiana, 26(3), 389–398. https://revistas.unal.edu.co/index.php/agrocol/article/view/11470

Ministerio de Agricultura y Desarrollo Rural. (2022, mayo 18). Colombia es el mayor productor y exportador de uchuva a nivel mundial. https://bit.ly/3adKNtn

Mohamed Eid, A. M., Salim, S. S., El-Din Hassan, S., Ismail, M. A., & Fouda, A. (2019). Role of endophytes in plant health and abiotic stress management. In V. Kumar, R. Prasad, M. Kumar, & D. Choudhary (Eds.), Microbiome in plant health and disease: Challenges and Opportunities (pp. 119–144); Springer, Sigapore. https://doi.org/10.1007/978-981-13-8495-0_6

Núñez Zarantes, V. M., Sánchez-Betancourt, E. P., Mayorga Cubillos, F. G., Navas Arboleda, A. A., & Gómez Gil, L. F. (2016). Corpoica Dorada. Variedad de uchuva para Boyacá, Cundinamarca y Antioquia. Corporación Colombiana de Investigación Agropecuaria. https://repository.agrosavia.co/handle/20.500.12324/11565

Olanrewaju, O. S., Glick, B. R., & Oluranti Babalola, O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33, Article 197. https://doi.org/10.1007/s11274-017-2364-9

Pastor, N., Masciarelli, O., Fischer, S., Luna, V., & Rovera, M. (2016). Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Current Microbiology, 73, 346–353. https://doi.org/10.1007/s00284-016-1068-y

Podile, A. R., & Kishore, G. K. (2007). Plant growth-promoting rhizobacteria. In S.S. Gnanamanickam (Ed.), Plant-associated bacteria (pp. 195–230); Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4538-7_6

Puente, L. A., Pinto-Muñoz, C. A., Castro, E. S., & Cortés, M. (2011). Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Research International, 44(7), 1733–1740. https://doi.org/10.1016/j.foodres.2010.09.034

Sturz, A. V., & Christie, B. R. (2003). Beneficial microbial allelopathies in the root zone: the management of soil quality and plant disease with rhizobacteria. Soil and Tillage Research, 72(2), 107–123. https://doi.org/10.1016/S0167-1987(03)00082-5

Tiing Lau, E., Tani, A., Yuen Khew, C., Qin Chua, Y., & San Hwang, S. (2020). Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation. Microbiological Research, 240, Article 126549. https://doi.org/10.1016/j.micres.2020.126549

Tilak, K. V. B. R., Ranganayaki, N., Pal, K. K., De, R., Saxena, A. K., Shekhar Nautiyal, C., Mittal, S., Tripathi, A. K., & Johri, B. N. (2005). Diversity of plant growth and soil health supporting bacteria. Current Science, 89(1), 136–150. https://www.currentscience.ac.in/Volumes/89/01/0136.pdf

Tzec-Interián, J. A., Desgarennes, D., Carrión, G., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., Ferrera-Rodríguez, O., Santos-Rodríguez, D. L., Liahut-Guin, N., Caballero-Reyes, G. E., & Ortiz-Castro, R. (2020). Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLOS ONE, 15(4), Article e0231215. https://doi.org/10.1371/journal.pone.0231215

Uribe Gutiérrez, L. A, Cotes Prado, A. M., Zapata Narváez, J. A, Beltrán Acosta, C. R., Torres Torres, L. A., García Riaño, J. L., Santos Díaz, A. M., & Mejía Maldonado, C. N. (2021). Colección de microorganismos con interés en control biológico - AGROSAVIA. Corporación Colombiana de Investigación Agropecuaria. https://doi.org/10.15472/mwpqlq

Verma, P., Nath Yadav, A., Kumar, V., Pratap Singh, D., & Kumar Saxena, A. (2017). Beneficial plant-microbes interactions: Biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In D. Singh, H. Singh, & R. Prabha (Eds.), Plant-microbe interactions in Agro-ecological Perspectives (pp. 543–580). Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_22

Wan, T., Zhao, H., & Wang, W. (2018). Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. Journal of Phytopathology, 166(5), 324–332. https://doi.org/10.1111/jph.12690

Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., & Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, Article 126328. https://doi.org/10.1016/j.micres.2019.126328

Published

2022-12-13

How to Cite

Beltrán-Acosta, C. R., Zapata-Narváez, Y. A., Millán-Montaño, D. A., & Díaz-García, A. (2022). Effect of Bacillus amyloliquefaciens and Pseudomonas migulae on the growth of gooseberry (Physalis peruviana L.) seedlings: Rizobacterias promotoras en plántulas de uchuva (Physalis peruviana L.). Agronomía Mesoamericana, 34(1), 50669. https://doi.org/10.15517/am.v34i1.50669