Fish waste silage, a green process for low feedstock availability. A Review

Authors

  • Claudia Carina Libonatti National University of the Center of the Buenos Aires Province, Buenos Aires, Argentina https://orcid.org/0000-0002-5379-6730
  • Daniela Alejandra Agüería National University of the Center of the Buenos Aires Province, Buenos Aires, Argentina
  • Javier Breccia National University of La Pampa, La Pampa, Argentina

DOI:

https://doi.org/10.15517/am.v34i2.51077

Keywords:

fischery, discard, acid lactic bacteria, fermetation, byproducts

Abstract

Introduction. Different fishing activities generate a waste volume related to the processing species (viscera, heads and bones), the discards of the companion fauna, species of low commercial value and the losses related to handling problems. Fish meal production is the most common process for recovery nutrients from these fish processing byproducts. However, those places with reduced infrastructure or where the volume of wastes produced do not justified the economic equation for conversion into fish meal or oil, the biological silage could be the technology of choice to promote a sustainable waste management. Objective. To compilate, organize and summarize literature related to biological fermentation of fish waste and its applications. Development. A bibliographic review was carried out (January 1994 - December 2020) referring to the comprehensive use of fishing residues mainly focused on the use of lactic acid bacteria in fish waste fermentation. The information was organized in different sections: fish silage, lactic acid bacteria and carbohydrate sources for biological silage. Conclusions. The studies analyzed in this review highlight the possibility of using a wide variety of carbohydrate sources, biological starters and fish waste fermentation conditions. The satisfactory results show the potential use of fish waste in different applications. This work could contribute to the fisheries that decide to adopt this kind technology in order to provide an innovative and viable recycling bioeconomy.

Downloads

Download data is not yet available.

References

Ahmed, J. & Mahendrakar, N. S. (1996). Autolysis and rancidity development in tropical freshwater fish viscera during fermentation. Bioresource Technology, 58(3), 247–251. https://doi.org/10.1016/S0960-8524(96)00085-5

Bello, R. A. (1997). Experiencias con ensilado de pescado en Venezuela. En V. Figueroa & M. Sánchez (Eds.), Tratamiento y utilización de residuos de origen animal, pesquero y alimenticio en la alimentación animal [Estudio FAO producción y sanidad animal 134] (pp. 1–14). Organización de Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/3/w4132s/w4132s.pdf

Bhaskar, N., Suresh, P. V., Sakhare, P. Z., & Sachindra, N. M. (2007). Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response Surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme and Microbial Technology, 40(5), 1427–1434. https://doi.org/10.1016/j.enzmictec.2006.10.019

Cadavid-Rodríguez, L. S., Vargas-Muñoza, M. A., & Plácido, J. (2019). Biomethane from fish waste as a source of renewable energy for artesanal fishing communities. Sustainable energy Technologies and Assessments, 34, 110–115. https://doi.org/10.1016/j.seta.2019.05.006

Castro, R., Guerrero-Legarreta I., & Bórquez, R. (2018). Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation. Biotechnology Reports, 20, Article e00287. https://doi.org/10.1016/j.btre.2018.e00287

Cheng, Z. J., Hardy, R. W., & Usry, J. L. (2003). Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture, 215(1–4), 255–265. https://doi.org/10.1016/S0044-8486(02)00166-7

Cira, L. A., Huerta, S., Hall G. M., & Shirai, K. (2002). Pilot scale lactic acid fermentation of shrimp wastes for chitin. Process Biochemistry, 37(12), 1359–1366. https://doi.org/10.1016/S0032-9592(02)00008-0

Copes, J., Pellicer, K., del Hoyo, G., & García Romero, N. (2006). Producción de ensilado de pescado en baja escala para uso de emprendimientos artesanales. Analecta Veterinaria, 26(1), 5–8. https://bit.ly/3wGYTuu

Dapkevičius, M. L. E., Batista, I., Nout, M. J. R, Rombou, F. R., & Houben J. H. (1998). Lipid and protein changes during the ensilage of blue whiting (Micromesistius poutassou Risso) by acid and biological methods. Food Chemistry, 63(1), 97–102. https://doi.org/10.1016/S0308-8146(97)00156-8

Dapkevicius, M. L. N. E., Nout, M. J. R., Rombouts, F. M., Houben, J. H., & Wymenga, W. (2000). Biogenic amine formation and degradation by potential fish silage starter microorganisms. International Journal of Food Microbiology, 57(1–2), 107–114. https://doi.org/10.1016/S0168-1605(00)00238-5

Davies, S. J., Guroy, D., Hassaan, M. S., El-Ajnaf, S. M., & El-Haroun, E. (2020). Evaluation of co-fermented apple-pomace, molasses and formic acid generated sardine based fish silages as fishmeal substitutes in diets for juvenile european sea bass (Dicentrachus Labrax) production. Aquaculture, 521, Article 735087. https://doi.org/10.1016/j.aquaculture.2020.735087

dos Santos, C. E., da Silva, J., Zinani, F., Wander, P., & Gomes, L. P. (2015). Oil from the acid silage of Nile tilapia waste: Physicochemical characteristics for its application as biofuel. Renewable Energy, 80, 331–337. https://doi.org/10.1016/j.renene.2015.02.028

Espeche, M. C., Pellegrino, M., Frola, I., Larriestra, A., Bogni, C., & Nader-Macías, M. E. F. (2012). Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastitis. Anaerobe, 18, 103–109. https://doi.org/10.1016/j.anaerobe.2012.01.002

Evers, D. J., & Carroll, D.J. (1996). Preservation of crab or shrimp waste as silage for Cattle. Animal Feed Science Technology, 59(4), 233–244. https://doi.org/10.1016/0377-8401(95)00908-6

Fagbenro, O., & Jauncey, K. (1993). Chemical and nutritional quality of raw, cooked and salted fish silages. Food Chemistry, 48(4), 331–335. https://doi.org/10.1016/0308-8146(93)90313-5

Fagbenro, O., & Jauncey, K. (1994a). Growth and protein utilization by juvenile catfish (Clarias gariepinus) fed moist diets containing autolysed protein from stored lactic-acid-fermented fish-silage. Bioresource Technology, 48(1), 43–48. https://doi.org/10.1016/0960-8524(94)90134-1

Fagbenro, O., & Jauncey, K. (1994b). Chemical and nutritional quality of fermented fish silage containing potato extracts, formalin or ginger extracts. Food Chemistry, 50(4), 383–388. https://doi.org/10.1016/0308-8146(94)90209-7

Fagbenro, O., & Jauncey, K. (1995). Growth and protein utilization by juvenile catfish (Clarias gariepinus) fed dry diets containing co-dried lactic-acid-fermented fish silage and protein feedstuffs. Bioresource Technology, 51(1), 29–35. https://doi.org/10.1016/0960-8524(94)00064-8

Fagbenro, O. A., & Jauncey, K. (1998). Physical and nutritional properties of moist fermented fish silage pellets as protein supplement for tilapia (Oreochromis niloticus). Animal Feed Science and Technology, 71(1–2), 11–18. https://doi.org/10.1016/S0377-8401(97)00123-5

Faid, M., H., Karani, A., Elmarrakchi, & Achkari-Begdouri, A. (1994). A biotechnological process for the valorization of fish waste. Bioresource Technology, 49(3), 237–241. https://doi.org/10.1016/0960-8524(94)90046-9

Fernández Herrero, A. L., Tabera, A., Agüeria, D., & Manca, E. (2013). Obtención, caracterización microbiológica y físico-química de ensilado biológico de anchoita (Engraulis anchoita). Revista Electrónica de Veterinaria, 14(2), 1–15.

Fernández Herrero, A. L., Fernández Compás, A., & Manca, E. (2015). Ensayo preliminar de obtención de ensilado biológico de anchoita (Engraulis Anchoita), utilizando hez de malta de cebada (Hordeum Vulgare L) como fuente de hidratos de carbono. Revista Electrónica de Veterinaria, 16(3), 1–13.

Ferraz de Arruda, L., Borghesi, R., & Oetterer, M. (2007). Use of fish waste silage- A Review. Brazilian Archives of Biology and Technology, 50(5), 879–889. https://doi.org/10.1590/S1516-89132007000500016

Gaspar, P., Carvalho, A. L., Vigna, S., Santos, H., & Rute Neves, A. (2013). From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnology Advances, 31(6), 764–788. https://doi.org/10.1016/j.biotechadv.2013.03.011

Gelman, A., Drabkin, V., & Glatman, L. (2001). Evaluation of lactic acid bacteria, isolated from lightly preserved fish products, as starter cultures for new fish-based food products. Innovative Food Science & Emerging Technologies, 1(3), 219–226. https://doi.org/10.1016/S1466-8564(00)00023-0

Gomez, G., Ortiz, M., Perea, C., & Lopez, F. (2014). Evaluación del ensilaje de vísceras de tilapia roja (Oreochromis spp) en alimentación de pollos de engorde. Biotecnología en el Sector Agropecuario y Agroindustrial, 12(1), 106–114. https://bit.ly/3LJNcsn

Goddard, J. S., & Al-Yahyai D. S. S. (2001). Chemical and nutritional characteristics of dried sardine silage. Journal of Aquatic Food Product Technology 10(4), 39–50. https://doi.org/10.1300/J030v10n04_04

Góngora, H. G., Ledesma, P., Lo Valvo, V. R., Ruiz, A. E., & Breccia, J. D. (2012). Screening of lactic acid bacteria for fermentation of minced wastes of Argentinean hake (Merluccius hubbsi). Food and Bioproducts Processing, 90(4), 767–772. http://doi.org/10.1016/j.fbp.2012.04.002

Góngora, H. G., Maldonado, A. A., Ruiz, A. E., & Breccia, J. D. (2018). Supplemented feed with biological silage of fish-processing wastes improved health parameters and weight gain of mice. Engineering in Agriculture, Environment and Food, 11(3), 153–157. https://doi.org/10.1016/j.eaef.2018.04.001

Gullu, K., Guzel, S., & Tezel, R. (2015). Producing silage from industrial waste of fisheries. Ekoloji, 24(95), 40–98. https://hdl.handle.net/20.500.12809/3213

Hammoumi, A., Faid, M., El yachioui, M., & Amarouch, H. (1998). Characterization of fermented fish waste used in feeding trials with broilers. Process Biochemistry, 33(4), 423–427. https://doi.org/10.1016/S0032-9592(97)00092-7

Hardy, R. W. (2010). Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research, 41(5), 770–776. https://doi.org/10.1111/j.1365-2109.2009.02349.x

Hayek, S. A., & Ibrahim, S. A. (2013). Current limitations and challenges with lactic acid bacteria: A review. Food and Nutrition Sciences, 4(11A), 73–87. http://doi.org/10.4236/fns.2013.411A010

Holguín, M. S., Caicedo, L. A., & Veloza, L. C. (2009). Estabilidad de almacenamiento de ensilados biológicos a partir de residuos de pescado inoculados con bacterias ácido-lácticas. Revista de la Facultad de Medicina Veterinaria y Zootecnia, 56(2), 95–104. https://revistas.unal.edu.co/index.php/remevez/article/view/13390

Inoue, S., Suzuki-Utsunomiya, K., Komori, Y., Kamijo, A., Yumura, I., Tanabe, K., Miyawaki, A., & K. Koga. (2013). Fermentation of non-sterilized fish biomass with a mixed culture of film-forming yeasts and lactobacilli and its effect on innate and adaptive immunity in mice. Journal of Bioscience and Bioengineering, 116(6), 682–687. http://doi.org/10.1016/j.jbiosc.2013.05.022

Irianto A., & Austin, B. (2003). Use of dead probiotic cells to control furunculosis in rainbow trout, Onchorhynchus mykiss (Walbaum). Journal of Fish Diseases, 26, 59–62. https://doi.org/10.1046/j.1365-2761.2003.00414.x

Kim, D. -H., & Austin, B. (2006). Cytokine expression in leucocytes and gut cells of rainbow trout, Oncorhynchus mykiss Walbaum, induced by probiotics. Veterinary Immunology and Immunopathology, 114(3-4), 297–304. https://doi.org/10.1016/j.vetimm.2006.08.015

Kumar Rai, A., Swapnaa, H. C., Bhaskara, N., Halamib, P. M., & Sachindraa, N. M. (2010). Effect of fermentation ensilaging on recovery of oil from fresh water fish víscera. Enzyme and Microbial Technology, 46(1), 9–13. https://doi.org/10.1016/j.enzmictec.2009.09.007

Libonatti, C., Agüeria, D., García, C., & Basualdo, M. (2018). Weissella paramesenteroides encapsulation and its application in the use of fish waste. Revista Argentina de Microbiología, 51(1), 81–83. https://doi.org/10.1016/j.ram.2018.03.001

Li, P., Mai, K., Trushenski, J., & Wu, G. (2009). New developments in fish amino acid nutrition: towards functional and environmentally oriented aquafeeds. Amino Acids, 37, 43–53. https://doi.org/10.1007/s00726-008-0171-1

Llanes Iglesias, J. E., Toledo Pérez, J., & Lazo de la Vega Valdez, J. M. (2010). Evaluación de desechos de pescado frescos y ensilados en la alimentación de híbridos de Clarias gariepinus x Clarias macrocephalus. Revista Cubana de Investigaciones Pesqueras, 27(1), 21–25. http://hdl.handle.net/1834/4106

Mondal, K., Kaviraj, A., & Mukhopadhyay, P. K. (2011). Partial replacement of fishmeal by fermented fish-offal meal in the formulation of diet for Indian minor carp Labeobata. Journal of Applied Aquaculture, 23(1), 41–50. https://doi.org/10.1080/10454438.2011.549783

Moon, H. Y. L., & Gatlin III, D. M. (1994). Effects of dietary animal proteins on growth and body composition of the red drum (Sciaenops ocellatus). Aquaculture, 120(3-4), 327–340. https://doi.org/10.1016/0044-8486(94)90089-2

Najim, S. M., Al-Noor, S. S., & Jasim, B. M. (2014). Effects of fish meal replacement with fish biosilage on some haematological and biochemical parameters in common carp Cyprinus carpio fingerlings. International Journal of Research in Fisheries and Aquaculture, 4(3), 112–116.

Nayak, S. K., Swain, P., & Mukherjee, S. C. (2007). Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (Ham). Fish & Shellfish Immunology, 23(4), 892–896. https://doi.org/10.1016/j.fsi.2007.02.008

Nges, I. A., Mbatia, B., & Björnsson, L. (2012). Improved utilization of fish waste by anaerobic digestion following omega-3 fatty acids extraction. Journal of Environmental Management, 110, 159–165. http://doi.org/10.1016/j.jenvman.2012.06.011

Oetterer, M. (2002). Industrialização do pescado cultivado. Agropecuária.

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2014). El estado mundial de la pesca y la acuicultura. Oportunidades y desafíos. http://www.fao.org/3/a-i3720s.pdf

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2020). El estado mundial de la pesca y la acuicultura. La Sostenibilidad en acción. https://www.fao.org/3/ca9229es/ca9229es.pdf

Parín, M. A., & Zugarramurdi, A. (1997). Aspectos económicos del procesamiento y uso del ensilado de pescado. En V. Figueroa, M. & Sánchez (Eds.), Tratamiento y utilización de residuos de origen animal, pesquero y alimenticio en la alimentación animal [Estudio FAO producción y sanidad animal 134] (pp. 41–63). Organización de Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/3/w4132s/w4132s.pdf

Palkar, N. D., Koli, J. M., Patange, S. B., Sharangdhar, S. T., Sadavarte, R. K., & Sonavane, A. E. (2017). Comparative study of fish silage prepared from fish market waste by using different techniques. International Journal of Current Microbiology and Applied Sciences, 6(12), 3844–3858. https://doi.org/10.20546/ijcmas.2017.612.444

Pinto de Carvalho, G. G., Vieira Pires, A. J., Mattos Veloso, C., Ferreira da Silva, F., & Aparecida de Carvalho, B. M. (2006). Fish filleting residues silage in tilapia fingerlings diets. Revista Brasileira de Zootecnia, 35(1), 126–130. https://doi.org/10.1590/S1516-35982006000100016

Raa, J., Gildberg, A., & Olley, J. N. (1982). Fish silage: A review. Critical Reviews in Food Science and Nutrition, 16(4), 343–419. https://doi.org/10.1080/10408398209527341

Ramírez, A. (2013). Globefish research programme. Innovative uses of fisheries by-products (Vol. 110). Food and Agriculture Organization of the United Nations. https://www.fao.org/3/bb213e/bb213e.pdf

Ramírez Ramírez, J. C. (2009). Aprovechamiento de fauna de acompañamiento del camarón y subproductos pesqueros mediante la elaboración de ensilado de pescado [Tesis de doctorado, Universidad Autónoma Metropolitana]. Repositorio de la Universidad Autónoma Metropolitana. http://tesiuami.izt.uam.mx/uam/aspuam/presentatesis.php?recno=14812&docs=UAMI14812.pdf

Ramírez Ramírez, J. C., Ibarra Espain, J. I., Gutiérrez Leyva, R., Ulloa, J. A., & Rosas Ulloa, P. (2016). Use of biological fish silage in broilers feed: Effect on growth performance and meat quality. Journal of Animal & Plant Sciences, 27(3), 4293–4304. https://doi.org/10.35759/JAnmPlSci.v27-3.4

Shabani, A., Jazi, V., Ashayerizadeh, A., & Barekatain, R. (2019). Inclusion of fish waste silage in broiler diets affects gut microflora, cecal short-chain fatty acids, digestive enzyme activity, nutrient digestibility, and excreta gas emission. Poultry Science, 98(10), 4909–4918. http://doi.org/10.3382/ps/pez244

Samaddar, A., & Kaviraj, A. (2014). Processing of fish offal waste through fermentation utilizing whey as inoculum. International Journal of Recycling of Organic Waste in Agriculture, 3, Article 45. http://doi.org/10.1007/s40093-014-0045-3

Tacon, A. G. J., & Metian, M. (2008). Global overview on the use of fish meal and fish oil industrially compounded aquafeeds: trend and future prospect. Aquaculture, 285(1–4), 146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015

Toledo Pérez, J., & Llanes Iglesias, J. (2006). Estudio comparativo de los residuos de pescado ensilados por vías bioquímica y biológica. Revista AquaTIC, 25(9), 28–33. http://www.revistaaquatic.com/ojs/index.php/aquatic/article/view/206

Topic Popovic, N., Strunjak-Perovic, I., Sauerborn-Klobucar, R., Barisic, J., Jadan, M., Kazazic, S., Kesner-Koren, I., Prevendar Crnic, A., Suran, J., Beer Ljubic, B., Matijatko, V., & Coz-Rakovac, R. (2017). The effects of diet supplemented with Lactobacillus rhamnosus on tissue parameters of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research, 48, 2388–2401. https://doi.org/10.1111/are.13074

Valério Geron, L. J., Zeoula, L. M., Vidotti, R. M., Matsushita, M., Kazama, R., Ferreira Ferreira Caldas Neto, S., & Fereli, F. (2007). Chemical characterization, dry matter and crude protein ruminal degradability and in vitro intestinal digestion of acid and fermented silage from tilapia filleting residue. Animal Feed Science and Technology, 136(3–4), 226–239. https://doi.org/10.1016/j.anifeedsci.2006.09.006

van ’t Land, M., Vanderperren E., & Raes, K. (2017) The effect of raw material combination on the nutritional composition and stability of four types of autolyzed fish silage. Animal Feed Science and Technology, 234, 284–294. https://doi.org/10.1016/j.anifeedsci.2017.10.009

Vázquez, J. A., Docasal, S. F., Prieto, M. A., González, M. P., & Murado, M. A. (2008). Growth and metabolic features of lactic acid bacteria in media with hydrolysed fish viscera. An approach to bio-silage of fishing by-products. Bioresource Technology, 99(14), 6246–6257. https://doi.org/10.1016/j.biortech.2007.12.006

Vázquez, J. A., Nogueira, M., Durán, A., Prieto, M. A., Rodríguez-Amado, I., Rial, D., González, M. P., & Murado, M. A. (2011). Preparation of marine silage of swordfish, ray and shark visceral waste by lactic acid bacteria. Journal of Food Engineering, 103(4), 442–448. https://doi.org/10.1016/j.jfoodeng.2010.11.014

Vidotti, R. M., Carneiro, D. J., & Viegas, E. (2002). Growth rate of Pacu, Piaractus mesopotamicus, fingerlings fed diets containing co-dried fish silage as replacement of fish meal. Journal of Applied Aquaculture, 12(4), 77–88. http://dx.doi.org/10.1300/J028v12n04_07

Wicki, G., Panne, S., Alvarez, M., & Romano, L. (2007). Tecnologías de ensilados desarrollados en Argentina. En G. Wicky, G. Dapello, & M. Alvarez, (Ed.), Desarrollo y utilización de ensilado ácido como componente para peces (pp. 19–30). Organización de las Naciones Unidas para la Alimentación y la Agricultura.

Yusuf, M. A., & Hamid, T. H. A. T. A. (2013). Lactic acid bacteria: Bacteriocin producer: A mini review. IOSR Journal of Pharmacy, 3(4), 44–50. http://www.iosrphr.org/papers/v3i4/part.1/I034044050.pdf

Zahar, M., Benkerroum, N., Guerouali, A., Laraki, K., & El Yakoubi, K. (2002). Effect of temperature, anaerobiosis, stirring and salt addition on natural fermentation silage of sardine and sardine wastes in sugarcane molasses. Bioresources Technology, 82(2), 171–176. https://doi.org/10.1016/S0960-8524(01)00165-1

Zhang, J. L., Xie, Q. M., Ji, J., Yang, W. H., Wu, Y. B., Li, C., Ma, J. Y., & Bi, Y. Z. (2012). Different combinations of probiotics improve the production performance, egg quality, and immune response of layer hens. Poultry Science, 91(11), 2755–2760. https://doi.org/10.3382/ps.2012-02339

Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107

Zhoug, Q. -C., Tan, B. -P., Mai, K. -S., & Liu, Y. -J. (2004). Apparent digestibility of selected feed ingredients for juvenile cobia Rachycentron canadum. Aquaculture, 241(1–4), 441–451. https://doi.org/10.1016/j.aquaculture.2004.08.044

Published

2023-04-27

How to Cite

Libonatti, C. C., Agüería, D. A., & Breccia, J. (2023). Fish waste silage, a green process for low feedstock availability. A Review. Agronomía Mesoamericana, 34(2), 51077. https://doi.org/10.15517/am.v34i2.51077