Soybean (Glycine max) Purple Syndrome and its relationship with bioclimatic variables
DOI:
https://doi.org/10.15517/am.2023.53248Keywords:
phytopatology, diseases, climatologyAbstract
Introduction. Cercospora Leaf Blight (CBL) and Purple Seed Stain (PSS) are two endemic diseases of soybean (Glycine max) in Argentina. Objective. To select the bioclimatic variables (VBs) associated to the severity values equal to or greater than 90 % of the CBL and/or incidences equal to or greater than 50 % for the PSS in Argentina. Materials and methods. In the soybean region of Argentina between 2015 and 2016, 45 VBs available in Worldclim (temperatures, precipitations, and radiation) were used for modeling with the MaxEnt program. From the maps obtained in the modeling, the probabilities of a severity (SEV) of CBL ≥ 90 % and/or an incidence (I) of PSS ≥ 50 % were extracted for each geographical point evaluated in this study, subsequently used in generating multiple linear regressions. Results. Among of the 45 analyzed VBs, precipitation and temperature showed the strongest association with both diseases. Radiation exhibited the least association with both Cercospora Leaf Blight severity (SEV) and Purple Seed Stain incidence. Conclusion. Bioclimatic variables such as temperatures (between 25 °C and 30 °C) and precipitation between the months of December to April exhibited the strongest associations with severity values equal to or greater than 90 % of the CBL and/or incidences equal to or greater than 50 % for PSS in Argentina.
Downloads
References
Bonney, R., Cooper, C. B., Dickinson, J. L., Kelling, S., Phillips, T. B., Rosenberg, K. V., & Shirk, J. L. (2009). Citizen Science: A Developing Tool for Expanding Science Knowledge and Scientific Literacy. BioScience, 59(11), 977–984. https://doi.org/10.1525/bio.2009.59.11.9
Byass, P. (2009). Epidemiology without borders: an anational view of global health. Global Health Action, 2(1), Article 2052. https://doi.org/10.3402/gha.v2i0.2052
Carmona, M. A., Moschini, R. C., Cazenave, G. R., & Sautua, F. (2010). Relación entre la precipitación registrada en estados reproductivos de la soja y la severidad de Septoria glycines y Cercospora kikuchii. Tropical Plant Pathology, 35(2), 71–78. https://doi.org/10.1590/s1982-56762010000200001
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (2011). Infostat - Software estadístico (versión 2011). Universidad Nacional de Córdoba. http://www.infostat.com.ar/index.php?mod=page&id=15
Elith, J., Phillips, S., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of Development Descriptions for Soybeans, Glycine Max (L.) Merrill 1. Crop Science, 11(6), 929–931. https://doi.org/10.2135/cropsci1971.0011183x001100060051x
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086
Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A., & Steffey, K. L. (2015). Compendium of soybean diseases and pests (5th ed.). American Phytopathological Society. https://doi.org/10.1094/9780890544754
Kantolic, A. G., Mercau, J. L., Slafer, G. A., & Sadras, V. O. (2007). Simulated yield advantages of extending post-flowering development at the expense of a shorter pre-flowering development in soybean. Field Crops Research, 101(3), 321–330. https://doi.org/10.1016/j.fcr.2006.12.008
Kumar Shukla, P., Baradevanal, G., Rajan, S., & Fatima, T. (2020). MaxEnt prediction for potential risk of mango wilt caused by Ceratocystis fimbriata Ellis and Halst under different climate change scenarios in India. Journal of Plant Pathology, 102(3), 765–773. https://doi.org/10.1007/s42161-020-00502-9
Lavilla, M., & Ivancovich, A. (2021). Relación entre enfermedades y rendimiento de granos de soja. Agronomía Mesoamericana, 32(2), 479–486. http://doi.org/10.15517/am.v32i2.44057
Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2021). Evaluación del tizón foliar y la mancha púrpura en semilla de soja en Argentina. Agronomía Mesoamericana, 32(2), 619–628. http://doi.org/10.15517/am.v32i2.43359
Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022a). Diagrammatic scale for assessment the severity of Cercospora leaf blight on soybean (Glycine max) leaflets. Agronomía Mesoamericana, 33(1), Artículo 43338. https://doi.org/10.15517/am.v33i1.43338
Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022b). Tizón Foliar y la Mancha Púrpura de la semilla causados por Cercospora kikuchii en soja (Glycine max L. Merr.). Agronomía Mesoamericana, 33(1), Artículo 48494. https://doi.org/10.15517/am.v33i3.48494
Mathioni, S. M., de Carvalho, S. V., Regiane Brunelli, K., Beló, A., & Aranha Camargo, L. E. (2006). Aggressiveness between genetic groups I and II of isolates of Cercospora zeae-maydis. Scientia Agricola, 63(6), 547–551. https://doi.org/10.1590/s0103-90162006000600006
Panagopoulos, I., Bornman, J. F., & Björn, L. (1992). Response of sugar beet plants to ultraviolet-B (280-320 nm) radiation and Cercospora leaf spot disease. Physiologia Plantarum, 84(1), 140–145. https://doi.org/10.1111/j.1399-3054.1992.tb08776.x
Pei, Y. L., Shi, T., Li, C. P., Liu, X. B., Cai, J. M., & Huang, G. X. (2014). Distribution and pathogen identification of cassava brown leaf spot in China. Genetics and Molecular Research, 13(2), 3461–3473. https://doi.org/10.4238/2014.april.30.7
Phillips, S., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31(2), 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
Phillips, S., Anderson, R. H., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
QGIS. (2023). Geographic Information System. QGIS Association. http://www.qgis.org
Soberón, J., & Peterson, A. T. (2004). Biodiversity informatics: managing and applying primary biodiversity data. Philosophical Transactions of the Royal Society B, 359(1444), 689–698. https://doi.org/10.1098/rstb.2003.1439
Upchurch, R. G., Walker, D. C., Rollins, J. A., Ehrenshaft, M., & Daub, M. E. (1991). Mutants of Cercospora kikuchii Altered in Cercosporin Synthesis and Pathogenicity. Applied and Environmental Microbiology, 57(10), 2940–2945. https://doi.org/10.1128/aem.57.10.2940-2945.1991
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 M. Lavilla, A. Ivancovich, A. Díaz Paleo
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).