Predictive model of the severity of leaf blight by Cercospora kikuchii using meteorological variables

Authors

  • M. Lavilla Universidad Nacional del Noroeste de la provincia de Buenos Aires, Buenos Aires, Argentina https://orcid.org/0000-0002-7282-4696
  • M. Martínez Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
  • A. Ivancovich Universidad Nacional del Noroeste de la provincia de Buenos Aires, Buenos Aires, Argentina
  • A. Díaz-Paleo Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina

DOI:

https://doi.org/10.15517/am.2023.54430

Keywords:

Glycine max, fungus, pathology, plague

Abstract

Introduction. In integrated disease management, it is important to incorporate elements such as economic
damage thresholds, monitoring, and risk forecasting systems, which constitute tools to define disease control strategies. Objective. Develop a predictive model of the severity of Cercospora leaf blight (TFC) using meteorological variables for the north of the province of Buenos Aires, Argentina. Materials and methods. There were data on the incidence
and severity of TFC corresponding to five relevant Pergamino, Buenos Aires, soybean production cycles (2013-2017) in different reproductive stages R1 to R7. The dependent variable was the probability of occurrences of categorized levels of the rate of increase (TI) of the severity of TFC caused by C. kikuchii. The elements and meteorological variables used were daily records of maximum and minimum temperature, precipitation, and relative humidity. The
nonparametric Kendall Tau-b coefficient TI of connection between the TI binary categorized levels of TFC severity and the weather variables was calculated. Results. The meteorological variables with the greatest consequences in relation to the TI of the TFC were those related to relative humidity (DHR, MOJRO, DHRT). The inclusion of a thermal variable (GDTmax) was important for the adjustment of the predictive model. Conclusion. It was possible to develop a TFC severity prediction model that included two meteorological variables, one related to relative humidity
days and another thermal related to a maximum temperature limit for the development of the disease. To validate and strengthen the proposed model, it is necessary to have more severity data over the years.

Downloads

Download data is not yet available.

References

Agrios, G. N. (2005). Plant pathology (5th Ed.). Elsevier Academic Press.

Bombelli, E. C. (2011). Modelado para la predicción de enfermedades en cultivos de alto valor comercial [Tesis de Maestría, Universidad Tecnológica Nacional]. Universidad Tecnológica Nacional. http://www.edutecne.utn.edu.ar/tesis/modelado_prediccion_enfermedades.pdf

Carmona, M., Moschini, R., Cazenave, G., & Sautua, F. (2010). Relación entre la precipitación registrada en estados reproductivos de la soja y la severidad de Septoria glycines y Cercospora kikuchii. Tropical Plant Pathology, 35(2), 71-78. https://doi.org/10.1590/s1982-56762010000200001

De Wolf, E. D., & Isard, S. A. (2007). Disease cycle approach to plant disease prediction. Annual Review of Phytopathology, 45(1), 203-220. https://doi.org/10.1146/annurev.phyto.44.070505.143329

El Jarroudi, M., Kouadio, L., Bock, C. H., El Jarroudi, M., Junk, J., Pasquali, M., Maraite, H., & Delfosse, P. (2017). A threshold-based weather model for predicting stripe rust infection in winter wheat. Plant Disease, 101(5), 693-703. https://doi.org/10.1094/pdis-12-16-1766-re

Fehr, W. R., Caviness, C. E., Burmood, D. T., & Pennington, J. S. (1971). Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Science, 11(6), 929-931. https://doi.org/10.2135/cropsci1971.0011183x001100060051x

Henderson, D., Williams, C. J., & Miller, J. S. (2007). Forecasting late blight in potato crops of Southern Idaho using logistic regression analysis. Plant Disease, 91(8), 951-956. https://doi.org/10.1094/pdis-91-8-0951

Hughes, G, McRoberts, N., Madden, L. V., & Nelson, S. C. (1997). Validating mathematical models of plant-disease progress in space and time. Mathematical Medicine and Biology, 14(2), 85-112. https://doi.org/10.1093/imammb/14.2.85

Lavilla, M., & Ivancovich, A. (2021). Relación entre enfermedades y rendimiento de granos de soja. Agronomía Mesoamericana, 32(2), 141-148. https://doi.org/10.15517/am.v32i2.44057

Lavilla, M., Ivancovich, A. J., & Díaz-Paleo, A. (2021). Diagrammatic scale for assessment the severity of Cercospora leaf blight on soybean (Glycine max) leaflets. Agronomía Mesoamericana, 33(1), Article 43338. https://doi.org/10.15517/am.v33i1.43338

Lavilla, M., Ivancovich, A., & Díaz-Paleo, A. (2022). Tizón Foliar y la Mancha Púrpura de la semilla causados por Cercospora kikuchii en soja (Glycine max L. Merr.). Agronomía Mesoamericana, 33(3), Artículo 48944. https://doi.org/10.15517/am.v33i3.48494

March, G. J., Oddino, C. M., & Marinelli, A. D. (2010). Manejo de enfermedades de los cultivos según parámetros epidemiológicos (1ª ed.). Biglia Impresores.

Moschini, R. C., Sisterna, M. N., & Carmona, M. A. (2006). Modelling of wheat black point incidence based on meteorological variables in the southern Argentinean Pampas region. Australian Journal of Agricultural Research, 57(11), 1151-1156. https://doi.org/10.1071/ar05275

Montes, C., Ghulam Hussain, S., & Krupnik, T. J. (2022). Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: results from a continental-scale modeling approach. International Journal of Biometeorology, 66(11), 2237-2249. https://doi.org/10.1007/s00484-022-02352-9

Yadav, R., Bharti, O., Pandya, R. K., Thakur, M. P., & Yadav, A. (2016). Correlation study of individual meteorological parameters and disease severity for prediction of pearl millet blast. International Journal of Current Research, 8(11), 41580-41582. http://www.journalcra.com/article/correlation-study-individual-meteorological-parameters-and-disease-severity-prediction-pearl

Published

2023-07-14

How to Cite

Lavilla, M., Martínez, M., Ivancovich, A., & Díaz-Paleo, A. (2023). Predictive model of the severity of leaf blight by Cercospora kikuchii using meteorological variables. Agronomía Mesoamericana, 34(3), 54430. https://doi.org/10.15517/am.2023.54430

Most read articles by the same author(s)