Physiological response of Solanum phureja under water deficit
DOI:
https://doi.org/10.15517/am.2024.55692Keywords:
drought stress, photosynthesis, potato, acclimatizationAbstract
Introduction. The parameters of physiological response to drought stress are the result of a combination of slow-or fast-acting attributes. Gas exchange variables are classified as fast-acting and their level of occurrence or impact depends on the interaction between factors such as genotype and the duration, intensity, and phenological stage of stress occurrence. Objective. To identify the levels of physiological response exhibited by Solanum phureja under progressive water deficit stress. Materials and methods. The experiment was conducted between 2019 and 2020 under semi-controlled conditions at the Obonuco Research Center of the Corporación Colombiana de Investigación Agropecuaria. Four potato cultivars were planted, with half of the trial was maintained at field capacity and the other half subjected to water deficit stress by withholding irrigation for 15 days, followed by rehydration. Gas exchange variables, chlorophyll content, and photosynthetic efficiency were evaluated every three days. Results. Significant differences were observed, with maximum gas exchange values in control plants showing 16.67 μmol m-2 s-1 photosynthesis rate (A); 0.34 mol m-2 s-1 stomatal conductance (gs); 5.5 mmol m-2 s-1 transpiration (E), and under stress, 1.17 μmol m-2 s-1 (A); 0.013 mol m-2 s-1 (gs); 0.29 mmol m-2 s-1 (E). Chlorophyll content values ranged between 451.7 and 474.69 mg m-2 with and without irrigation, respectively. Conclusions. Stomatic closure was the earliest response to water deficit, and potato plants showed recovery in gas exchange values after rehydration following stress. Finally, three levels of physiological response were identified: mild, moderate, and severe stress, depending on the intensity and duration of stress, which is useful for future studies and the development of irrigation schedules.
Downloads
References
Ahmadi, S. H., Andersen, M. N., Plauborg, F., Poulsen, R. T., Jensen, C. R., Sepaskhah, A. R., & Hansen, S. (2010). Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA]. Agricultural Water Management, 97(10), 1486–1494. https://doi.org/10.1016/J.AGWAT.2010.05.002
Ariza Acevedo, W. A. (2017). Respuestas fisiológicas, bioquímicas y rendimiento en tres variedades de papa criolla (Solanum tuberosum grupo Phureja) en déficit hídrico [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio institucional Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/62084
Bae, H., & Sicher, R. (2004). Changes of soluble protein expression and leaf metabolite levels in Arabidopsis thaliana grown in elevated atmospheric carbon dioxide. Field Crops Research, 90(1), 61–73. https://doi.org/10.1016/J.FCR.2004.07.005
Casierra-Posada, F. (2011). Fotoinhibición: Respuesta fisiológica de los vegetales al estrés por exceso de luz. Revista Colombiana de Ciencias Hortícolas, 1(1), 114–123. https://doi.org/10.17584/RCCH.2007V1I1.1150
Chaves-Barrantes, N. F., & Gutiérrez-Soto, M. V. (2017). Respuestas al estrés por calor en los cultivos. I. aspectos moleculares, bioquímicos y fisiológicos. Agronomía Mesoamericana, 28(1), 237–253. https://doi.org/10.15517/AM.V28I1.21903
Coleman, W. K. (2008). Evaluation of wild Solanum species for drought resistance: 1. Solanum gandarillasii Cardenas. Environmental and Experimental Botany, 62(3), 221–230. https://doi.org/10.1016/J.ENVEXPBOT.2007.08.007
da Graça, J. P., Rodrigues, F. A., Bouças Farias, J. R., Neves de Oliveira, M. C., Hoffmann-Campo, C. B., & Zingaretti, S. M. (2010). Physiological parameters in sugarcane cultivars submitted to water deficit. Brazilian Journal of Plant Physiology, 22(3), 189–197. https://doi.org/10.1590/S1677-04202010000300006
Deeba, F., Pandey, A. K., Ranjan, S., Mishra, A., Singh, R., Sharma, Y. K., Shirke, P. A., & Pandey, V. (2012). Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiology and Biochemistry, 53, 6–18. https://doi.org/10.1016/J.PLAPHY.2012.01.002
Díaz Valencia, P. A. (2016). Evaluación de la tolerancia al estrés hídrico en genotipos de papa criolla (Solanum phureja Juz et Buk) [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio institucional Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/55602
Eckardt, N. A. (2009). A new chlorophyll degradation pathway. The Plant Cell, 21(3), 700. https://doi.org/10.1105/TPC.109.210313
Fanizza, G., Della Gatta, C., & Bagnulo, C. (1991). A non-destructive determination of leaf chlorophyll in Vitis vinifera. Annals of Applied Biology, 119(1), 203–205. https://doi.org/10.1111/J.1744-7348.1991.TB04858.X
Fernández, R. J. (2010). Control versus realismo en estudios ecofisiológicos: opciones de diseño y procedimientos en experimentos de sequía. En M. E. Fernández, & J. E. Gyenge (Eds.), Técnicas de medición en ecofisiología vegetal, conceptos y procedimientos (pp. 11–22). Ediciones INTA.
Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., & Medrano, H. (2008). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell and Environment, 31(5), 602–621. https://doi.org/10.1111/J.1365-3040.2007.01757.X
Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/S-2004-820867
García-Valenzuela, X., García-Moya, E., Rascón-Cruz, Q., Herrera-Estrella, L., & Aguado-Santacruz, G. A. (2005). Chlorophyll accumulation is enhanced by osmotic stress in graminaceous chlorophyllic cells. Journal of Plant Physiology, 162(6), 650–661. https://doi.org/10.1016/J.JPLPH.2004.09.015
Ghobadi, M., Taherabadi, S., Ghobadi, M.-E., Mohammadi, G.-R., & Jalali-Honarmand, S. (2013). Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Industrial Crops and Products, 50, 29–38. https://doi.org/10.1016/J.INDCROP.2013.07.009
Havaux, M. (1993). Characterization of thermal damage to the photosynthetic electron transport system in potato leaves. Plant Science, 94(1–2), 19–33. https://doi.org/10.1016/0168-9452(93)90003-I
Hitz, S., & Smith, J. (2004). Estimating global impacts from climate change. Global Environmental Change, 14(3), 201–218. https://doi.org/10.1016/J.GLOENVCHA.2004.04.010
Hijmans, R. J. (2003). The effect of climate change on global potato production. American Journal of Potato Research, 80(4), 271–279. https://doi.org/10.1007/BF02855363
Hernandez, C., Villagra, P., & Antunez, A. (2016). Relación suelo-agua-planta y evaluaciones de estrés hídrico en papas. En M. T. Pino (Ed.), Estrés hídrico y térmico en papas, avances y protocolos (pp. 86 – 105). Instituto de Investigaciones Agropecuarias.
Ierna, A., & Mauromicale, G. (2006). Physiological and growth response to moderate water deficit of off-season potatoes in a Mediterranean environment. Agricultural Water Management, 82(1–2), 193–209. https://doi.org/10.1016/J.AGWAT.2005.05.005
Jefferies, R. A. (1994). Drought and chlorophyll fluorescence in field-grown potato (Solanum tuberosum). Physiologia Plantarum, 90(1), 93–97. https://doi.org/10.1111/J.1399-3054.1994.TB02197.X
Lahlou, O., Ouattar, S., & Ledent, J.-F. (2003). The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie, 23(3), 257–268. https://doi.org/10.1051/AGRO:2002089
Liu, F., Jensen, C. R., Shahanzari, A., Andersen, M. N., & Jacobsen, S. E. (2005). ABA regulated stomatal control and photosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying. Plant Science, 168(3), 831–836. https://doi.org/10.1016/J.PLANTSCI.2004.10.016
Liu, F., Shahnazari, A., Andersen, M. N., Jacobsen, S. E., & Jensen, C. R. (2006). Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Scientia Horticulturae, 109(2), 113–117. https://doi.org/10.1016/J.SCIENTA.2006.04.004
Lim, C. W., Baek, W., Jung, J., Kim, J.-H., & Lee, S. C. (2015). Function of ABA in stomatal defense against biotic and drought stresses. International Journal of Molecular Sciences, 16(7), 15251–15270. https://doi.org/10.3390/IJMS160715251
Mane, S. P., Vasquez Robinet, C.., Ulanov, A., Schafleitner, R., Tincopa, L., Gaudin, A., Nomberto, G., Alvarado, C., Solis, C., Avila Bolivar, L., Blas, R., Ortega, O., Solis, J., Panta, A., Rivera, C., Samolski, I., Carbajulca, D. H., Bonierbale, M., … Grene, R. (2008). Molecular and physiological adaptation to prolonged drought stress in the leaves of two Andean potato genotypes. Functional Plant Biology, 35(8), 669–688. https://doi.org/10.1071/FP07293
Medici, L. O., Reinertb, F., Carvalho, D. F., Kozak, M., & Azevedo, R. A. (2014). ¿Qué hay de mantener las plantas bien regadas? Botánica Ambiental y Experimental, 99(1), 38-42. https://doi.org/10.1016/j.envexpbot.2013.10.019
Medrano, H., Bota, J., Cifre, J., Flexas, J., Ribas-Carbó, M., & Gulías, J. (2007). Eficiencia en el uso del agua por las plantas. Investigaciones Geográficas, 43, 63–84. https://doi.org/10.14198/INGEO2007.43.04
Morales, C., Rodríguez, D., Dell’amico, J. A., Torrecillas, A., & Sánchez-Blanco, M. de J. (2006). Efecto de altas temperaturas en algunas variables del crecimiento y el intercambio gaseoso en plantas de tomate (Lycopersicon esculentum Mill. CV. Amalia). Cultivos Tropicales, 27(1), 45–48. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/399/pdf
Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: Not so cut and dried. Plant Physiology, 164(4), 1636-1648. https://doi.org/10.1104/pp.113.233478
Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, Article 542. https://doi.org/10.3389/fpls.2015.00542
Pallas, J. E., Michel, B. E., & Harris, D. G. (1967). Photosynthesis, transpiration, leaf temperature, and stomatal activity of cotton plants under varying water potentials. Plant Physiology, 42(1), 76–88. https://doi.org/10.1104/PP.42.1.76
Parent, B., Hachez, C., Redondo, E., Simonneau, T., Chaumont, F., & Tardieu, F. (2009). Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: A trans-scale approach. Plant Physiology, 149(4), 2000–2012. https://doi.org/10.1104/PP.108.130682
Paul, S., Kumar Das, M., Baishya, P., Ramteke, A., Farooq, M., Baroowa, B., Sunkar, R., & Gogoi, N. (2017). Effect of high temperature on yield associated parameters and vascular bundle development in five potato cultivars. Scientia Horticulturae, 225, 134–140. https://doi.org/10.1016/J.SCIENTA.2017.06.061
Pino, M. T. (Ed.). (2016). Estrés hídrico y térmico en papas avances y protocolos (Boletín INIA No. 331). Instituto de Investigaciones Agropecuarias. https://hdl.handle.net/20.500.14001/6486
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Ramírez, D. A., Rolando, J. L., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Is discrimination of 13C in potato leaflets and tubers an appropriate trait to describe genotype responses to restrictive and well-watered conditions? Journal of Agronomy and Crop Science, 201(6), 410–418. https://doi.org/10.1111/JAC.12119
Ramírez, D. A., Yactayo, W., Gutiérrez, R., Mares, V., De Mendiburu, F., Posadas, A., & Quiroz, R. (2014). Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168, 202–209. https://doi.org/10.1016/J.SCIENTA.2014.01.036
Ramírez, D. A., Yactayo, W., Rens, L. R., Rolando, J. L., Palacios, S., De Mendiburu, F., Mares, V., Barreda, C., Loayza, H., Monneveux, P., Zotarelli, L., Khan, A., & Quiroz, R. (2016). Defining biological thresholds associated to plant water status for monitoring water restriction effects: Stomatal conductance and photosynthesis recovery as key indicators in potato. Agricultural Water Management, 177, 369–378. https://doi.org/10.1016/J.AGWAT.2016.08.028
Rodríguez Pérez, L. (2015). Caracterización de la respuesta fisiológica de tres variedades de papa (Solanum tuberosum L.) bajo condiciones de estrés por déficit hídrico [Tesis de Maestría, Universidad Nacional de Colombia]. Repositorio institucional Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/55548
Rodríguez-Pérez, L., Ñústez, C. E., & Moreno, L. P. (2017). El estrés por sequía afecta los parámetros fisiológicos, pero no el rendimiento de los tubérculos en tres cultivares andinos de papa (Solanum tuberosum L.). Agronomía Colombiana, 35(2), 158–170. https://doi.org/10.15446/AGRON.COLOMB.V35N2.65901
Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110, 27–35. https://doi.org/10.1016/J.ENVEXPBOT.2014.09.006
Schapendonk, A. H. C. M., Spitters, C. J. T., & Groot, P. J. (1989). Effects of water stress on photosynthesis and chlorophyll fluorescence of five potato cultivars. Potato Research, 32(1), 17–32. https://doi.org/10.1007/BF02365814
Siddique, M. R. B., Hamid, A., & Islam, M. S. (2000). Drought stress effects on water relations of wheat. Botanical Bulletin, 41(1), 35–39.
Song, Y., Chen, Q., Ci, D., Shao, X., & Zhang, D. (2014). Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biology, 14(1), Article 111. https://doi.org/10.1186/1471-2229-14-111
Tinjacá Ruiz, S., & Rodríguez Molano, L. E. (2015). Catálogo de papas nativas de Nariño Colombia. Universidad Nacional de Colombia.
Tourneux, C., Devaux, A., Camacho, M. R., Mamani, P., & Ledent, J.-F. (2003). Effect of water shortage on six potato genotypes in the highlands of Bolivia (II): water relations, physiological parameters. Agronomie, 23(2), 181–190. https://doi.org/10.1051/AGRO:2002080
Yactayo, W., Ramírez, D. A., Gutiérrez, R., Mares, V., Posadas, A., & Quiroz, R. (2013). Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agricultural Water Management, 123, 65–70. https://doi.org/10.1016/J.AGWAT.2013.03.009
Zoebl, D. (2006). Is water productivity a useful concept in agricultural water management? Agricultural Water Management, 84(3), 265–273. https://doi.org/10.1016/J.AGWAT.2006.03.002
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Juan Fernando López-Rendón, Pedro Rodríguez-Hernández, Diego Hernan Meneses Buitrago, Hyrcania-Vanessa Lopez-Peñafiel
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
1. Proposed policy for open access journals
Authors who publish in this journal accept the following conditions:
a. Authors retain the copyright and assign to the journal the right to the first publication, with the work registered under the attribution, non-commercial and no-derivative license from Creative Commons, which allows third parties to use what has been published as long as they mention the authorship of the work and upon first publication in this journal, the work may not be used for commercial purposes and the publications may not be used to remix, transform or create another work.
b. Authors may enter into additional independent contractual arrangements for the non-exclusive distribution of the version of the article published in this journal (e.g., including it in an institutional repository or publishing it in a book) provided that they clearly indicate that the work was first published in this journal.
c. Authors are permitted and encouraged to publish their work on the Internet (e.g. on institutional or personal pages) before and during the review and publication process, as it may lead to productive exchanges and faster and wider dissemination of published work (see The Effect of Open Access).