Growth and nutrients uptake of dragon fruit (Hylocereus costaricensis and H. monocanthus) cultivated in Costa Rica

Authors

DOI:

https://doi.org/10.15517/am.2024.57493

Keywords:

nutrient management, plant nutrition, deterministic models, biomass production

Abstract

Introduction. The cultivation of dragon fruit (Hylocereus costaricensis and H. monocanthus) is increasing in Costa Rica, but technical information for its management, such as nutritional requirements, fertilization timing, and growth behavior, is lacking. Objective. To quantify and model the growth and nutrient uptake of dragon fruit (H. costaricensis and H. monocanthus) under dry tropics conditions in Costa Rica. Materials and methods. The research was conducted from 2017 to 2020 in Guanacaste, Costa Rica. Plants were sampled at 76, 165, 308, 450, 607, 903, 1249, and 1706 days after planting (DAP) and 205 fruits were analyzed. Dry matter was quantified, and the uptake of N, P, Ca, Mg, K, S, Fe, Cu, Zn, Mn, and B was calculated. Two logistic models were fitted to determine nutrient uptake, and linear regressions were calibrated for fresh fruit. Results. For a planting density of 3000 plants/ha, the nutritional requirements per hectare were: 137 kg N, 32 kg P, 327 kg K, 63 kg Mg, 32 kg S, 1,60 kg Zn, and 0,21 kg B. The best-fitting logistic model (RMSE = 0.09) accurately estimated the uptake of N, P, Ca, S, Zn, and B. The linear regression model demonstrated high predictive capacity (R2 > 0.85) for the nutrient requirements of N, P, K, Mg, and S in the fruit. Conclusion. Logistic models provided high precision in deterministically modeling nutrient uptake in dragon fruit plants. The study affectively quantified and modeled the nutritional behavior of the plants under Costa Rica’s dry tropical conditions, providing essential information for optimizing fertilization programs for the crop.

Downloads

Download data is not yet available.

References

Amato Moreira, R., Monteiro da Cruz, M. do C., Ramalho Fernandes, D., de Barros e Silva, E., & de Oliveira, J. (2016). Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization. Pesquisa Agropecuária Tropical, 46(3), 230–237. https://doi.org/10.1590/1983-40632016v4640813

Arredondo, E., Chiamolera, F. M., Casas, M., & Cuevas, J. (2022). Comparing different methods for pruning pitaya (Hylocereus undatus). Horticulturae, 8(7), Article 661. https://doi.org/10.3390/horticulturae8070661

Auzanneau, J., Huyghe, C., Escobar-Gutiérrez, A. J., Julier, B., Gastal, F., & Barre, P. (2011). Association study between the gibberellic acid insensitive gene and leaf length in a Lolium perenne L. synthetic variety. BMC Plant Biology, 11(1), Article 183. https://doi.org/10.1186/1471-2229-11-183

Bertsch, F. (2009). Absorción de nutrimentos por los cultivos. Asociación Costarricense de la Ciencia de Suelos.

Botella, M. Á., Arévalo, L., Mestre, T. C., Rubio, F., García-Sánchez, F., Rivero, R. M., & Martínez, V. (2017). Potassium fertilization enhances pepper fruit quality. Journal of Plant Nutrition, 40(2), 145–155. https://doi.org/10.1080/01904167.2016.1201501

Cabalceta, G., & Molina, E. (2006). Niveles críticos de nutrimentos en suelos de Costa Rica utilizando la solución extractora Mehlich 3. Agronomía Costarricense, 30(2), 31–44. https://doi.org/10.15517/rac.v30i2.6808

Campos Granados, M. F. (2022). Análisis del crecimiento, desarrollo y maduración de frutos de pitahaya roja Hylocereus spp. [Tesis de licenciatura, Universidad de Costa Rica]. Repositorio de la Universidad de Costa Rica. https://repositorio.sibdi.ucr.ac.cr/handle/123456789/19435

Carranza, C., Lanchero, O., Miranda, D., & Chaves, B. (2009). Análisis del crecimiento de lechuga (Lactuca sativa L.) ‘Batavia’ cultivada en un suelo salino de la Sabana de Bogotá. Agronomía Colombiana, 27(1), 41–48. https://revistas.unal.edu.co/index.php/agrocol/article/view/11330

Chu, Y.-C., & Chang, J.-C. (2020). High temperature suppresses fruit/seed set and weight, and cladode regreening in red-fleshed ‘Da Hong’ pitaya (Hylocereus polyrhizus) under controlled conditions. HortScience, 55(8), 1259–1264. https://doi.org/10.21273/HORTSCI15018-20

Corres Antonio, D. (2006). Efecto del fertirriego en la propagación sexual y asexual de la pitahaya (Hylocereus undatus) bajo cultivo sin suelo [Tesis de maestría, Instituto Politécnico Nacional]. Repositorio del Instituto Politecnico Nacional de Oxalaca. http://literatura.ciidiroaxaca.ipn.mx:8080/xmlui/handle/LITER_CIIDIROAX/19

de Castro Lima, D., Barbosa Mendes, N. V., de Madeiros Corrêa, M. C., Kenji Taniguchi, C. A., Fernandes Queiroz, R., & Natale, W. (2019). Growth and nutrient accumulation in the aerial part of red Pitaya (Hylocereus sp.). Revista Brasileira de Fruticultura, 41(5), Article e-030. https://doi.org/10.1590/0100-29452019030

de Castro Lima, D., Basrbosa Mendes, N. V., Saldanha Diógenes, M. F., de Madeiros Corrêa, M. C., Natale, W., & Kenji Taniguchi, C. A. (2021). Initial growth and nutrient accumulation in pitaya plants at different phenological stages. Revista Caatinga, 34(3), 720–727. https://doi.org/10.1590/1983-21252021v34n324rc

Esquivel, P., & Araya Quesada, Y. (2012). Características del fruto de la pitahaya (Hylocereus sp.) y su potencial de uso en la industria alimentaria. Revista Venezolana de Ciencia y Tecnología de Alimentos, 3(1), 113–129. https://sites.google.com/site/1rvcta/v3-n1-2012/r7?pli=1

Esquivel, P., Stintzing, F.C., & Carle, R. (2007). Comparison of morphological and chemical fuit traits from different pitahya genotypes (Hylocereus sp.) grown in Costa Rica. Journal of Applied Botany and Food Quality, 81(1), 7–14. https://ojs.openagrar.de/index.php/JABFQ/article/view/2103

Fairhurst, T., & Härdter, R. (2012). Palma aceitera. Manejo para rendimientos altos y sostenibles. International Plan Nutrition Institute and International Potash Institute.

Feller, C., Favre, P., Janka, A., Zeeman, S. C., Gabriel, J.-P., & Reinhardt, D. (2015). Mathematical modeling of the dynamics of shoot-root interactions and resource partitioning in plant growth. PLOS ONE, 10(7), Article e0127905. https://doi.org/10.1371/journal.pone.0127905

Fontanetti Rodrigues, M. G., Arruda Ferreira, A. F., da Silva Malagutti, E., dos Santos Pinto, M., Honorato Monteiro, L. N., & Esutáquio de Sá, M. (2021). Cladode size and collection time for pitahaya propagation. Ciência e Agrotecnologia, 45, Articulo e004821. https://doi.org/10.1590/1413-7054202145004821

Gabriel y Galán, J. M., Prada, C., Martínez-Calvo, C., & Lahoz-Beltrá, R. (2015). A Gompertz regression model for fern spores germination. Anales Del Jardín Botánico de Madrid, 72(1), Article e015. https://doi.org/10.3989/ajbm.2405

Gajanayake, B., Reddy, R. K., & Shankle, M. W. (2015). Quantifying Growth and Developmental Responses of Sweetpotato to Mid- and Late-Season Temperature. Agronomy Journal, 107(5), 1854–1862. https://doi.org/10.2134/agronj14.0545

Ganeshamurthy, A., Kalaivanan, D., Selvakumar, G., & Panneerselvam, P. (2015). Nutrient management in horticultural crops. Indian Journal of Horticulture, 11(12), 30–42.

Garbanzo-León, G., Chavarría-Pérez, G., & Vega-Villalobos, E. V. (2019). Correlaciones alométricas en Hylocereus costaricensis y H. monocanthus (pitahaya): una herramienta para cuantificar el crecimiento. Agronomía Mesoamericana, 30(2), 425–436. https://doi.org/10.15517/am.v30i2.33574

Garbanzo-León, G., Vega-Villalobos, E. V., Rodríguez-Cisneros, J., Urbina-Briceño, C., Lázaro-Rojas, W., Alvarado-Jara, K., Barrientos-Bolaños, R., Duarte-Ortíz, K., Mora-Prendas, J., Trujillo-Olivas, V., & Rojas-Varela, J. (2021). Evaluación de tamaño de cladodios y bio-estimulantes de enraizamiento para la propagación de pitahaya. Agronomía Costarricense, 45(2), 29–40. https://doi.org/10.15517/rac.v45i2.47765

García Barquero, M. E., & Quirós Madrigal, O. (2010). Analisis del comportamiento de mercado de la pitahaya (Hylocereus undatus). Tecnología en Marcha, 23(2), 14–24. https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/62/61

García y García, A., Dourado-Neto, D., del Valle Basanta, M., López Ovejero, R. F., & Laércio Favarin, J. (2003). Logistic rice model for dry matter and nutrient uptake. Scientia Agricola, 60(3), 481–488. https://doi.org/10.1590/S0103-90162003000300011

Génard, M., & Huguet, J. G. (1996). Modeling the response of peach fruit growth to water stress. Tree Physiology, 16(4), 407–415. https://doi.org/10.1093/treephys/16.4.407

Gur, A., Osorio, S., Fridman, E., Fernie, A. R., & Zamir, D. (2010). hi2-1, A QTL which improves harvest index, earliness and alters metabolite accumulation of processing tomatoes. Theoretical and Applied Genetics, 121(8), 1587–1599. https://doi.org/10.1007/s00122-010-1412-8

Hau, B. (1993). Mathematical functions to describe disease progress curves of double sigmoid pattern. Phytopathology, 83(7), Article 928. https://doi.org/10.1094/Phyto-83-928

Hernández-Ramos, L., García-Mateos, M. del R., Castillo González, A. M., Ybarra Moncada, C., & Nieto-Ángel, R. (2020). Fruits of the pitahaya Hylocereus undatus and H. ocamponis: nutritional components and antioxidants. Journal of Applied Botany and Food Quality, 93, 197–203. https://doi.org/10.5073/JABFQ.2020.093.024

Hunt, H. (1979). Plant growth analysis: The rationale behind the use of the fitted mathematical function. Annals of Botany, 43, 245–249. https://www.jstor.org/stable/42756459

Johnston, A. M., & Bruulsema, T. W. (2014). 4R Nutrient stewardship for improved nutrient use efficiency. Procedia Engineering, 83, 365–370. https://doi.org/10.1016/j.proeng.2014.09.029

Kalcsits, L., Lotze, E., Tagliavini, M., Hannam, K. D., Mimmo, T., Neilsen, D., Neilsen, G., Atkinson, D., Casagrande Biasuz, E., Borruso, L., Cesco, S., Fallahi, E., Pii, Y., & Valverdi, N. A. (2020). Recent achievements and new research opportunities for optimizing macronutrient availability, acquisition, and distribution for perennial fruit crops. Agronomy, 10(11), Article 1738. https://doi.org/10.3390/agronomy10111738

Kawano, T., Wallbridge, N., & Plummer, C. (2020). Logistic models for simulating the growth of plants by defining the maximum plant size as the limit of information flow. Plant Signaling & Behavior, 15(2), Article 1709718. https://doi.org/10.1080/15592324.2019.1709718

Le Bellec, F., Vaillant, F., & Imbert, E. (2006). Pitahaya (Hylocereus spp.): a new fruit crop, a market with a future. Fruits, 61(4), 237–250. https://doi.org/10.1051/fruits:2006021

Li, W., Yang, M., Wang, J., Wang, Z., Fan, Z., Kang, F., Wang, Y., Luo, Y., Kuang, D., Chen, Z., Guo, C., Li, Y., He, X., Chen, X., Shi, X., & Zhang, Y. (2019). Agronomic Responses of major fruit crops to fertilization in China: A meta-analysis. Agronomy, 10(1), Article 15. https://doi.org/10.3390/agronomy10010015

Lim, C. A. A., Awan, T. H., Sta. Cruz, P. C., & Chauhan, B. S. (2015). Influence of environmental factors, cultural practices, and herbicide application on seed germination and emergence ecology of Ischaemum rugosum Salisb. PLOS ONE, 10(9), Article e0137256. https://doi.org/10.1371/journal.pone.0137256

Lipovetsky, S. (2010). Double logistic curve in regression modeling. Journal of Applied Statistics, 37(11), 1785–1793. https://doi.org/10.1080/02664760903093633

López-Turcios, O., & Guido-Miranda, A. (1998). Evaluación de dosis de nitrógeno y fósforo en el cultivo de pitahaya (Hylocereus undatus). Agronomía Mesoamericana, 9(1), 66–71. https://doi.org/10.15517/am.v9i1.24635

Lucena Cavalcante, Í. H., Geraldo Martins, A. B., da Silva Júnior, G. B., Fonseca da Rocha, L., Falcão Neto, R., & Ferreira Cavalcante, L. (2011). Adubação orgânica e intensidade luminosa no crescimento e desenvolvimento inicial da Pitaya em Bom Jesus-PI. Revista Brasileira de Fruticultura, 33(3), 970–983. https://doi.org/10.1590/S0100-29452011005000086

Luu, T.-T.-H., Le, T.-L., Huynh, N., & Quintela-Alonso, P. (2021). Dragon fruit: A review of health benefits and nutrients and its sustainable development under climate changes in Vietnam. Czech Journal of Food Sciences, 39(2), 71–94. https://doi.org/10.17221/139/2020-CJFS

Mizrahi, Y. (2014). Vine-cacti pitayas: the new crops of the world. Revista Brasileira de Fruticultura, 36(1), 124–138. https://doi.org/10.1590/0100-2945-452/13

Montanaro, G., Dichio, B., Xiloyannis, C., & Celano, G. (2006). Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Science, 170(3), 520–527. https://doi.org/10.1016/j.plantsci.2005.10.004

Morales-Ayala, Y., Ceja-Torres, L., Méndez-Inocencio, C., Silva-García, T., Venegas-González, J., & Pineda-Pineda, J. (2020). Respuesta vegetativa de pitahaya (Hylocereus spp.) a la aplicación de vermicompost y fertirriego. Tropical and Subtropical Agroecosystems, 23(3), Article 90. http://dx.doi.org/10.56369/tsaes.2923

Moreira, R. A., Cruz, M. C. M., Fernandes, D. R., Silva, E. B., Oliveira, J. (2016). Nutrient accumulation at the initial growth of pitaya plants according to phosphorus fertilization. Pesquisa Agropecuária Tropical, 46(3), 230–237. https://doi.org/10.1590/1983-40632016v4640813

Moustakas, N. K., Akoumianakis, K. A., & Passam, H. C. (2011). Patterns of dry biomass accumulation and nutrient uptake by okra (Abelmoschus esculentus (L.) Moench.) under different rates of nitrogen application. Australian Journal of Crop Science, 5(8), 993–1000. http://www.cropj.com/Moustakas_5_8_2011_993_1000.pdf

Nofriandi, I., Barchia, F., Fahrurrozi, F., Simanihuruk, B. W., & Sukarjo, E. I. (2021). Stem Cutting Growth of Red Dragon Fruit (Hylocereus costaricensis) due to Aplication of Cow Manure and KCl in Andosol. TERRA : Journal of Land Restoration, 4(2), 48–52. https://doi.org/10.31186/terra.4.2.48-52

Orrico Zalazar, G. (2013). Respuesta de la pitahaya amarilla (Cereus triangularis L.) a la aplicación complementaria de dos fertilizantes en tres dosis [Tesis de licenciatura, Universidad Central del Ecuador]. Repositorio Institucional de la Universidad Central del Ecuador. http://www.dspace.uce.edu.ec/handle/25000/1041

Ortiz-Hernández, Y. D., & Carrillo-Salazar, J. A. (2012). Pitahaya (Hylocereus spp.): a short review. Comunicata Scientiae, 3(4), 220–237. https://comunicatascientiae.com.br/comunicata/article/view/334

Overman, A. R., Scholtz, R. V., & Martin, F. G. (2003). In defense of the extended logistic model of crop production. Communications in Soil Science and Plant Analysis, 34(5–6), 851–864. https://doi.org/10.1081/CSS-120018979

Paramasivam, S., Alva, A. K., Hostler, K. H., Easterwood, G. W., & Southwell, J. S. (2000). Fruit nutrient accumulation of four orange varieties during fruit development 1. Journal of Plant Nutrition, 23(3), 313–327. https://doi.org/10.1080/01904160009382018

Qiu, R., Du, T., Kang, S., Chen, R., & Wu, L. (2015). Assessing the SIMDualKc model for estimating evapotranspiration of hot pepper grown in a solar greenhouse in Northwest China. Agricultural Systems, 138, 1–9. https://doi.org/10.1016/j.agsy.2015.05.001

R Core Team. (2022). A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/

Retana-Sánchez, K., Blanco-Meneses, M., & Castro-Zúñiga, O. (2018). Etiología del cáncer del tallo provocado por Neoscytalidiumdimidiatum (penz) en Hylocereus costaricensis, en Costa Rica. Agronomía Costarricense, 43(1), 21–33. https://doi.org/10.15517/rac.v43i1.35646

Rodríguez, W., & Leihner, D. (2006). Análisis del crecimiento vegetal. Universidad de Costa Rica.

Sepaskhah, A. R., Fahandezh-Saadi, S., & Zand-Parsa, S. (2011). Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management, 99(1), 51–57. https://doi.org/10.1016/j.agwat.2011.07.019

Shabani, A., Sepaskhah, A. R., & Kamgar-Haghighi, A. A. (2014). Estimation of yield and dry matter of rapeseed using logistic model under water salinity and deficit irrigation. Archives of Agronomy and Soil Science, 60(7), 951–969. https://doi.org/10.1080/03650340.2013.858807

Shabani, A., Sepaskhah, A. R., Kamgar-Haghighi, A. A., & Honar, T. (2018). Using double logistic equation to describe the growth of winter rapeseed. The Journal of Agricultural Science, 156(1), 37–45. https://doi.org/10.1017/S0021859617000934

Silber, A., Naor, A., Cohen, H., Bar-Noy, Y., Yechieli, N., Levi, M., Noy, M., Peres, M., Duari, D., Narkis, K., & Assouline, S. (2018). Avocado fertilization: Matching the periodic demand for nutrients. Scientia Horticulturae, 241, 231–240. https://doi.org/10.1016/j.scienta.2018.06.094

Soltani, A., & Sinclair, T. R. (Eds.). (2012). Modeling physiology of crop development, growth and yield. CAB International. https://www.cabidigitallibrary.org/doi/book/10.1079/9781845939700.0000

Srivastava, A. K., & Malhotra, S. K. (2017). Nutrient use efficiency in perennial fruit crops—A review. Journal of Plant Nutrition, 40(13), 1928–1953. https://doi.org/10.1080/01904167.2016.1249798

Tarara, J. M., Blom, P. E., Shafii, B., Price, W. J., & Olmstead, M. A. (2009). Modeling Seasonal Dynamics of Canopy and Fruit Growth in Grapevine for Application in Trellis Tension Monitoring. HortScience, 44(2), 334–340. https://doi.org/10.21273/HORTSCI.44.2.334

Vega Villalobos, E., & Musmanni Quintana, M. (2005). Recoleccion, reproduccion t adaptacion de frutales no tradicionales y exoticos del tropico seco de Costa Rica [Informe proyecto, VI-520-96-329.]. Universidad de Costa Rica. https://vinv.ucr.ac.cr/sigpro/web/projects/96329

Viñas, M., Fernández-Brenes, M., Azofeifa, A., & Jiménez, V. M. (2012). In vitro propagation of purple pitahaya (Hylocereus costaricensis [F.A.C. Weber] Britton & Rose) cv. Cebra. In Vitro Cellular & Developmental Biology - Plant, 48, 469–477. https://doi.org/10.1007/s11627-012-9439-y

Wang, Z.-H., Li, S.-X., & Malhi, S. (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture, 88(1), 7–23. https://doi.org/10.1002/jsfa.3084

Xiangxiang, W., Quanjiu, W., Jun, F., Lijun, S., & Xinlei, S. (2014). Logistic model analysis of winter wheat growth on China’s Loess Plateau. Canadian Journal of Plant Science, 94(8), 1471–1479. https://doi.org/10.4141/cjps2013-293

Zerpa-Catanho, D., Hernández-Pridybailo, A., Madrigal-Ortiz, V., Zúñiga-Centeno, A., Porras-Martínez, C., Jiménez, V. M., & Barboza-Barquero, L. (2019) Seed germination of pitaya (Hylocereus spp.) as affected by seed extraction method, storage, germination conditions, germination assessment approach and water potential. Journal of Crop Improvement, 33(3), 372–394. https://doi.org/10.1080/15427528.2019.1604457

Zhang, W.-P., Liu, G.-C., Sun, J.-H., Fornara, D., Zhang, L.-Z., Zhang, F.-F., & Li, L. (2017). Temporal dynamics of nutrient uptake by neighbouring plant species: evidence from intercropping. Functional Ecology, 31(2), 469–479. https://doi.org/10.1111/1365-2435.12732

Published

2024-04-11

How to Cite

Garbanzo-León, G., Vargas-Rojas, J. C., & Vega-Villalobos, E. V. (2024). Growth and nutrients uptake of dragon fruit (Hylocereus costaricensis and H. monocanthus) cultivated in Costa Rica. Agronomía Mesoamericana, 35, 57493. https://doi.org/10.15517/am.2024.57493

Most read articles by the same author(s)