Effect of Bacillus megaterium on strawberry crop

Authors

DOI:

https://doi.org/10.15517/am.2024.59611

Keywords:

biological control, control methods, biopesticides, Botrytis

Abstract

Introduction. In Ecuador, strawberry cultivation holds significant economic and social importance, having witnessed substantial growth in recent years. However, this sector faces challenges from various pests and diseases. Objective. To evaluate the effect of Bacillus megaterium on strawberry crop variables related to plant health and agronomic yield. Materials and methods. Field trial was conducted on an Albion strawberry plantation, four months after the first harvest, in Pichincha province, Ecuador. IB6 and AB4 strains of Bacillus megaterium were used at concentrations of 1 • 109 and 5 • 108 CFU/L. These were compared with a chemical control using captan (3 g/L) and chlorothalonil (2 mL/L) as fungicides, and abamectin (0.75 mL/L) and lambdacyhalothrin (0.3 mL/L) as insecticides in rotation. A split-plot design was applied with evaluations conducted at two intervals between April and June 2023. Variables measured included Botrytis cinerea incidence and severity index, fresh weight, yield, diameters, and Brix degrees of fruits. Results. There was no interaction between the treatment and time factors; the evaluated times showed no statistical differences. The treatment factor showed statistical differences for health and agronomic interest variables. The incidence of B. cinerea in the biological treatments was the lowest, with an average of 13 %. Mite control was greater than 72.71 % with the IB6 strain at a high concentration. This same treatment showed significant increases in the fresh weight of fruits (13.2 %), diameters (14 %), and soluble solids concentration (23 %), higher than the control. Conclusion. The use of Bacillus megaterium reduced the incidence of Botrytis cinerea, provided effective control against mites and thrips, and improved fresh weight, diameters and Brix degrees of fruits.

Downloads

Download data is not yet available.

References

Acurio, R., Ñacato, C., & Valencia, M. (2018). Cepas autóctonas de Bacillus subtilis como agente de biocontrol in vitro de Alternaria spp. en Brassica oleracea var. italica. Bionatura, 3(2), 607–611. https://doi.org/10.21931/RB/2018.03.02.8

Acurio Vásconez, R. D., Tenorio Moya, E. M., Collaguazo Yépez, L. A., Chiluisa-Utreras, V. P., & Vaca Suquillo, I. D. (2020). Evaluation of Bacillus megaterium strain AB4 as a potential biocontrol agent of Alternaria japonica, a mycopathogen of Brassica oleracea var. italica. Biotechnology Reports, 26, Article e00454. https://doi.org/10.1016/j.btre.2020.e00454

Badar, M. A., Mehmood, K., Hassan, I., Ahmed, M., Ahmad, I., Ahmad, N., & Hasan, M. U. (2022). Plant growth promoting bacteria (PGPB) enhance growth and yield of strawberry cultivars. Applied Ecology and Environmental Research, 20(3), 2187–2203. https://doi.org/10.15666/aeer/2003_21872203

Barrazueta-Rojas, S. G., Falconí, J. F., Navarro Ojeda, M. N., Oleas-López, J. M., & Mendoza-Zurita, G. X. (2018). Physicochemical properties and application of edible coatings in strawberry (Fragaria × Ananassa) preservation. Revista Facultad Nacional de Agronomía Medellín, 71(3), 8631–8641.

Benavides, Á., Cisne, J., Morán, J., & Duarte, H. (2022). Producción orgánica de fresa (Fragaria spp.), Las Sabanas, Madriz, Nicaragua. Universidad Nacional Agraria, Managua.

Benítez-Díaz, P., Miranda-Contreras, L., Balza-Quintero, A., Sánchez-Gil, B., & Molina-Morales, Y. (2015). Residuos de plaguicidas en fresa (Fragraria × ananassa) cosechada en una región agrícola del estado Mérida, Venezuela. Bioagro, 27(3), 181–188. http://www.ucla.edu.ve/bioagro/Rev27(3)/7.%20ms%201525.pdf

Bustamante Salgado, M. R. (2015). Obtención y evaluación in vitro de metabolitos secundarios de dos cepas de Bacillus subtilis contra el hongo fitopatógeno Fusarium spp. [Tesis de pregrado, Escuela Agrícola Panamericana]. Repositorio digital Zamorano. https://bdigital.zamorano.edu/handle/11036/4551

Cawoy, H., Debois, D., Franzil, L., De Pauw, E., Thonart, P., & Ongena, M. (2015). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8(2), 281–295. https://doi.org/10.1111/1751-7915.12238

Correa Londoño, G. (2004). Análisis de medidas repetidas (1.ª ed.). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/3150

Da Silva, L. I., Pereira de Oliveira, I., Da Conceição Jesus, E., Corrêa Pereira, M., Pasqual, M., De Araújo, R. C., & Dória, J. (2022). Fertilizer of the future: beneficial bacteria promote strawberry growth and yield and may reduce the need for chemical fertilizer. Agronomy, 12(10), Article 2465. https://doi.org/10.3390/agronomy12102465

Del Puerto Rodríguez, A. M., Suárez Tamayo, S., & Palacio Estrada, D. E. (2014). Efectos de los plaguicidas sobre el ambiente y la salud. Revista Cubana de Higiene y Epidemiología, 52(3), 372–387. https://revepidemiologia.sld.cu/index.php/hie/article/view/329

Djordje, F., Dimkić, I., Berić, T., Lozo, J., & Stanković, S. (2018). Control biológico de patógenos vegetales por especies de Bacillus. Journal of Biotechnology, 285, 44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044

Elnahal, A. S. M., El-Saadony, M. T., Saad, A. M., Desoky, E-S. M., El-Tahan, A. M., Rady, M. M., AbuQamar, S. F., & El-Tarabily, K. A. (2022). The use of microbial inoculants for biological control, plant growth promotion, and sustainable agriculture: A review. European Journal of Plant Pathology, 62(4), 759–792. https://doi.org/10.1007/s10658-021-02393-7

Feliziani, E., Landi, L., & Romanazzi, G. (2015). Preharvest treatments with chitosan and other alternatives to conventional fungicides to control postharvest decay of strawberry. Carbohydrate Polymers, 132, 111–117. https://doi.org/10.1016/j.carbpol.2015.05.078

Gadhave, K. R., Finch, P., Gibson, T. M., & Gange, A. C. (2016). Plant growth-promoting Bacillus suppress Brevicoryne brassicae field infestation and trigger density-dependent and density-independent natural enemy responses. Journal of Pest Science, 89(4), 985–992. https://doi.org/10.1007/s10340-015-0721-8

García, C., Albendi, G., & Molina, J. M. (2012). Potencial de uso de extractos vegetales disponibles comercialmente en el manejo integrado de plagas de la fresa. Boletín de Sanidad Vegetal. Plagas, 38, 223–232. https://www.mapa.gob.es/ministerio/pags/Biblioteca/Revistas/pdf_Plagas%2FBSVP_38_02_223_232.pdf

Gravel, A., & Naasz, R. (2019). Development of new insect suppression solutions for greenhouse production. ISHS Acta Horticulturae, 1266, 121–128. https://doi.org/10.17660/ActaHortic.2019.1266.17

Hashem, A., Tabassum, B., & Abd-Allah, E. F. (2019). Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

Instituto Geográfico Militar. (2013). Cantón Mejía. Generación de geoinformación para gestión del territorio a nivel nacional escala 1:25.000. Clima e Hidrología. Ministerio de Defensa Nacional, Instituo Espacial Ecuatoriano, y Secretaría Nacional de Planificación y Desarrollo. https://www.geoportaligm.gob.ec/descargas_prueba/mejia.html

Koike, S. T., & Bolda, M. (2016). El moho gris, o pudrición de fresa. Comisión de la Fresa de California. https://ucanr.edu/blogs/fresamora/blogfiles/37849.pdf

Kumar, P., Pandhi, S., Kumar Mahato, D., Kamle, M., & Mishra, A. (2021). Bacillus-based nano-bioformulations for phytopathogens and insect-pest management. Egyptian Journal of Biological Pest Control, 31(1), Article 128. https://doi.org/10.1186/s41938-021-00475-6

Llanes Echevarría, R. J. (2017). Alimentos hipolipemiantes que mejoran la salud cardiovascular. Revista Cubana de Cardiología y Cirugía Cardiovascular, 23(4), 549–582. https://revcardiologia.sld.cu/index.php/revcardiologia/article/view/708/pdf_110

Makris, G., Nikoloudakis, N., Samaras, A., Karaoglanidis, G. S., & Kanetis, L. I. (2022). Under pressure: a comparative study of Botrytis cinerea populations from conventional and organic farms in Cyprus and Greece. Phytopathology, 112(10), 2236–2247. https://doi.org/10.1094/PHYTO-12-21-0510-R

Merchán-Gaitán, J. B., Ferrucho, R. L., & Álvarez-Herrera, J. G. (2014). Efecto de dos cepas de Trichoderma en el control de Botrytis cinerea y la calidad del fruto en fresa (Fragaria sp.). Revista Colombiana de Ciencias Hortícolas, 8(1), 44–56. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/2799/2566

Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125. https://doi.org/10.1016/j.tim.2007.12.009

Pazarlar, S., Madriz-Ordeñana, K., & Thordal-Christensen, H. (2022). Bacillus cereus EC9 protects tomato against Fusarium wilt through JA/ET-activated immunity. Frontiers in Plant Science, 13, Article 1090947. https://doi.org/10.3389/fpls.2022.1090947

Petrasch, S., Knapp, S. J., Van Kan, J. A., & Blanco-Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877–892. https://doi.org/10.1111/mpp.12794

Silva, V., Yang, X., Fleskens, L., Ritsema, J. C., & Geissen, V. (2022). Environmental and human health at risk – Scenarios to achieve the Farm to Fork 50% pesticide reduction goals. Environment International, Article 165. https://doi.org/10.1016/j.envint.2022.107296

Torres, T. S., Allepuz Capdevilla, R., & Gordo Márquez, M. (2014). La contratación de mano de obra temporal en la agricultura hortofrutícola española. Revista Científica sobre Desarrollo Rural, (16), 7–37. http://ruralager.org/wp-content/uploads/Ager-16_1.pdf

Valenzuela Ruiz, V., Gálvez Gamboa, G. T., Villa Rodríguez, E. D., Parra Cota, F. I., Santoyo, G., & De Los Santos-Villalobos, S. (2020). Lipopéptidos producidos por agentes de control biológico del género Bacillus: revisión de herramientas analíticas utilizadas para su estudio. Revista Mexicana de Ciencias Agrícolas, 11(2), Artículo 2191. https://doi.org/10.29312/remexca.v11i2.2191

Vargas-Rojas, J. C., Vargas-Martínez, A., & Corrales-Brenes, E. (2023). Experimentos agrícolas con medidas repetidas en el tiempo: comparación entre estrategias de análisis. Agronomía Mesoamericana, 34(2), Artículo 52634. https://doi.org/10.15517/am.v34i2.52634

Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, 36(1), 95–130. https://doi.org/10.18781/r.mex.fit.1706-5

Wang, Y., Liang, J., Zhang, C., Wang, L., Gao, W., & Jiang, J. (2020). Bacillus megaterium WL-3 lipopeptides collaborate against Phytophthora infestans to control potato late blight and promote potato plant growth. Frontiers in Microbiology, 11, Article 01602. https://doi.org/10.3389/fmicb.2020.01602

Published

2024-09-23

How to Cite

Acurio-Vásconez, R. D., & García-Bolívar, J. J. (2024). Effect of Bacillus megaterium on strawberry crop. Agronomía Mesoamericana, 36, 59611. https://doi.org/10.15517/am.2024.59611