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Abstract 

 
In the second of five parts in a series, the Schroedinger equation is solved in paraboloidal 
coordinates to yield amplitude functions that enable accurate plots of their surfaces to 
illustrate the variation of shapes and sizes with quantum numbers n1, n2, m, for comparison 
with the corresponding plots of amplitude functions in coordinates of other systems.  A 
useful property of these functions in paraboloidal coordinates is their application to treat 
the Stark effect, when a hydrogen atom is placed in an isotropic electric field. 

 
Resumen 

 
En el segundo de cinco artículos de esta serie, la ecuación de Schrödinger se resuelve en 
coordenadas parabólicos para producir funciones de amplitud que permiten gráficos 
exactos de superficies, para ilustrar la variación de formas y tamaños con números 
cuánticos n1, n2 y m, y comparar con los gráficos correspondientes de funciones de 
amplitud en coordenadas de otros sistemas. Una propiedad útil de estas funciones en 
coordenadas paraboloides es su aplicación para tratar el efecto Stark, cuando un átomo de 
hidrógeno se ubica en un campo eléctrico isotrópico. 
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I. INTRODUCTION 
 
 In Schroedinger’s third article of four in a series of title Quantisation as a Problem of Proper 
Values [1,2,3,4] with which he introduced wave mechanics, he applied his differential equation to 
the solution of the hydrogen atom in circular paraboloidal coordinates, and specified a method to 
calculate the intensities of spectral lines [3].  As the type of central field of force in the hydrogen 
atom is coulombic, the variables in the partial-differential equation are separable in paraboloidal 
coordinates, to yield three ordinary-differential equations, one for each spatial variable in the 
definition of a space of three dimensions.  In this part II of a series of articles devoted to the 
hydrogen atom with its coordinates of the governing partial-differential equation separable in four 
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systems, we state the temporally independent partial-differential equation and its solution in 
paraboloidal coordinates, and provide plots of selected amplitude functions as surfaces 
corresponding to a chosen value of amplitude. As the dependence on time occurs in the same 
manner in all systems of coordinates in which the Schroedinger equation is separable, we accept 
the results from part I [5], and avoid that repetition.  Although the equations governing the form of 
the amplitude functions are here, of necessity, defined in coordinates according to a paraboloidal 
system, we view the surfaces of these amplitude functions invariably in rectangular cartesian 
coordinates: a computer procedure (in Maple) translates effectively from the original system of 
coordinates in which the algebra and calculus are performed to the system to which the human eye 
is accustomed. 
 
II. SCHROEDINGER’S EQUATION IN PARABOLOIDAL COORDINATES 
 
 We relate these mutually orthogonal circular paraboloidal coordinates u, v, φ to cartesian x, 
y, z, and spherical polar r, θ, φ  coordinates as algebraic formulae in both direct and inverse 
relations according to an established convention [6]. 
 

x = u v cos(φ),     y = u v sin(φ),    z = ½ (u2 – v2),    r = ½ (u2 + v2)  
u2 = r + z = r (1 + cos(θ)),   v2 = r − z = r (1 − cos(θ)),   φ = arctan(y/x) 

 
Surfaces of u, v and φ as constant quantities are exhibited in figure 1. Although this system 

of coordinates might be described elsewhere as parabolic, the surfaces of two defining coordinates 
in three dimensions are clearly paraboloids, or parabolas of revolution, that have circular cross 
sections, which thus dictate the most informative name of the system. The surfaces of constant u 
describe confocal paraboloids about the polar axis, z in cartesian coordinates, that open in the 
direction of negative z or θ = π rad and have a focus at the origin; the surfaces of constant v 
analogously describe confocal paraboloids that open in the direction of positive z, or θ = 0, and 
have also a focus at the origin.  The limiting cases of u and v tend to a line along axis z as u → 0 or v 
→ 0, with z < 0 and z > 0, respectively, and to a plane perpendicular to axis z as u or v becomes 
large with z >> 0 or z << 0, respectively.  The surfaces of constant equatorial angle φ have the same 
property as those in spherical polar coordinates – half-planes extending from the polar axis. With 
appropriate values of u, v and φ, a point can clearly locate anywhere in the coordinate space.  For 
use within the volume element in subsequent integrals, the jacobian of the transformation between 
cartesian and paraboloidal coordinates, as defined above, is u v (u2 + v2). 
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FIGURE 1. Definition of paraboloidal coordinates u, v, φ:  a paraboloid opening along 
negative z (red) has u = 1 unit and a focus at the origin; another paraboloid (blue), opening 
along positive z, has v = 1 unit and a focus at the origin; a half-plane has equatorial angle φ = 0 
with respect to plane xz. 

 
 A separation of the coordinates of the centre of mass of the H atom produces reduced mass 
µ of the system that is distant r from the origin, to supplant distance r between the electron and the 
atomic nucleus. Schroedinger’s temporally independent equation in explicit SI units then contains 
within terms on the left side of the equality an electrostatic potential energy and first and second 
partial derivatives of an assumed amplitude function ψ(u, v, φ) with respect to spatial coordinates 
u, v, φ within an hamiltonian operator H to take into account the kinetic and potential energies of 
the system; the right side of the equality comprises a product of energy E, as a variable parameter 
that has no dependence on coordinates, with the same amplitude function.  The resultant form, as 
H(u, v, φ) ψ(u, v, φ)  = E ψ(u, v, φ), resembles an eigenvalue relation. 
 

 

 
Apart from fundamental physical constants electric permittivity of free space ε0, Planck constant h 
and protonic charge e, there appear parameters Z for atomic number – Z = 1 for H – and µ for the 
reduced mass of the atomic system, practically equal to the electronic rest mass me. After 
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separation of the variables and solution of the three consequent ordinary-differential equations 
including definition of the separation parameters or integration constants, the full solution of the 
above equation has exactly this formula [7].  
 

 

 
This formula is accurately normalized such that 
 

∫ ψ(u, v, φ)* ψ(u, v, φ) dvol = 1, 
 

in which dvol is a volume element containing the jacobian specified above; the implied triple 
integration is over all space; an asterisk as raised suffix, so ψ∗ of an amplitude function implies a 
complex conjugate of ψ such that, wherever i = √−1 appears in ψ, −i appears in ψ*. A normalizing 
factor stated elsewhere [8] is incorrect.  The presence of i in an exponential factor as product with φ 
signifies that this formula is complex, thus containing real and imaginary parts.  Coefficient c that 
equals any complex number of modulus unity such as a fourth root of unity – i.e. ±1, ±√−1, occurs 
because Schroedinger’s equation is a linear homogeneous partial-differential equation, or equally 
because the temporally independent Schroedinger equation has the form of an eigenvalue relation, 
as shown above. The conventional choice c = 1, which is arbitrary and lacks physical justification, 
signifies that some solutions ψ(u,v,φ) as amplitude functions from the temporally independent 
Schroedinger equation appear in a purely real form, whereas most are complex; with a 
mathematically valid alternative choice c = i, some amplitude functions would be entirely 
imaginary, but most would still be complex and thus alien to physical space.  Choosing instead c = 
−1 or −i merely reverses the phase of an amplitude function or its constituent parts.  Parameters 
that appear in the solution but not in the partial-differential equation take discrete values, imposed 
by boundary conditions, as follows: m is called the equatorial, or magnetic, quantum number that 
assumes only integer values and that arises in the solution of the angular equation to define Φ(φ), 
as in spherical polar coordinates; the first arguments of the associated Laguerre functions, n1 and 
n2, like radial quantum number k among the three quantum numbers pertaining to spherical polar 
coordinates, must be non-negative integers so that for bound states of the hydrogen atom the 
Laguerre functions in U(u) and V(v) terminate at finite powers of variable u or v, and remain finite 
for u or v taking large values, respectively. The sum n1 + n2 of paraboloidal quantum numbers 
plays a role similar to that of radial quantum number k among the quantum numbers for spherical 
polar coordinates [8]; the difference n1 − n2, or its reverse, might be called an electric quantum 
number [8], because the energy of the linear Stark effect, whereby the H atom interacts with an 
external electric field, depends on that difference; vide infra. 
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 Whereas the solution of the temporally independent Schroedinger equation in spherical 
polar coordinates comprises a product of one function of distance R(r), involving radial variable r, 
and two angular functions Θ(θ) and Φ(φ) of which the product Y(θ,φ)  = Θ(θ) Φ(φ) constitutes 
spherical harmonics involving angles polar θ and equatorial φ, the analogous solution in 
paraboloidal coordinates comprises a product of two functions of distance variables, U(u) and 
V(v), and one and the same equatorial angular function Φ(φ):  
 

ψ(u,v,φ)  =  U(u) V(v) Φ(φ)  
 

each variable u and v has physical dimension of square root of length, so SI unit m½; ψ(u,v,φ) has a 
physical dimension consistent with SI unit m˗3/2. Since Schroedinger himself [3], both functions 
U(u) and V(v) are expressed traditionally in terms of Laguerre polynomials for the discrete states, 
although Kummer and Whittaker functions serve the purpose just as satisfactorily.  Just as a 
Laguerre polynomial in R(r) in spherical polar coordinates contains a sum of quantum numbers 
that occurs also in the exponent of the temporal factor, so both U(u) and V(v) contain, in the third 
arguments of their Laguerre functions, a sum n1 + n2 + |m| + 1; that sum that must take values of a 
positive integer likewise occurs in the temporal factor, omitted above; we associate that sum with 
n, an integer quantum number for energy that was originally defined from experiment.  For a 
particular value of energy quantum number n and magnetic quantum number m = 0, quantum 
numbers n1 and n2 can be chosen in n distinct ways; for |m| > 0, there are two ways of choosing m 
as ±|m|, which yields a total degeneracy n2 of amplitude functions, or the corresponding sets of 
quantum numbers, for a particular value of n and hence the energy associated with a particular 
amplitude function ψ(u,v,φ).  With coefficient c = 1, of n2 amplitude functions for a given value of n, 
n functions are real and n2 – n are complex, hence containing both real and imaginary parts that 
defy direct plots in less than six spatial dimensions. Whereas in spherical polar coordinates the 
energy of a H atom not subject to an external electric or magnetic field is formally independent of 
m, in paraboloidal coordinates under the same conditions the energy depends directly on its 
absolute value, |m|, in combination with quantum numbers n1 and n2, according to the formula 
above; as |m| is simply equivalent to a lower limit of l in spherical polar coordinates, the same 
sense of dependence remains in paraboloidal coordinates. 
 Regarding the frequencies and intensities of spectral lines as the principal observable 
properties of an atom, as Heisenberg recognised, independent of parochial quantum numbers n1, 
n2 and m in the case of paraboloidal coordinates, the frequency of a spectral line depends on only 
the difference of energies of spectrometric states.  The energy of each state depends on the inverse 
square of energy quantum number n = n1 + n2 + |m| + 1.  The intensities are just as readily 
calculated with paraboloidal amplitude functions [7] as with spherical polar amplitude functions, 
being proportional to the squares of matrix elements of cartesian coordinate z, or the spherical 
polar product r cos(θ), or the corresponding paraboloidal coordinate ½ (u2– v2) as defined above.  
The absorption spectrum thus maintains a form exactly as calculated with spherical polar 
coordinates and depicted in part I of articles in this series [5]. 
 
III. GRAPHICAL REPRESENTATIONS OF AMPLITUDE FUNCTION Ψ(u,v,φ) 
 
 Not only for comparison with graphical representations of amplitude functions calculated 
in coordinates of other systems but also to present quantitatively accurate shapes and sizes of these 
functions, we exhibit here some selected examples.  As a plot involving three independent 
variables – spatial coordinates u,v,φ – and dependent variable ψ(u,v,φ) would require at least four 
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dimensions, the best way to proceed with two dimensions, or three pseudo-dimensions, is to 
exhibit a surface of constant ψ at a value selected to display the overall spatial properties of a 
particular real amplitude function in an satisfactory manner, as explained elsewhere [5]. Whereas 
some textbooks of quantum mechanics in physics discuss amplitude functions of H in paraboloidal 
coordinates, for instance that by Schiff [9], almost invariably without plots, no known textbook of 
chemistry even mentions this topic; we hence present here accurate plots of exemplary functions, 
emphasizing a comparison with related functions expressed in spherical polar coordinates. 
 The formula of amplitude function ψ0,0,0 associated with the state of least energy, 
 

, 

 
shows no dependence on the angular variable, merely an exponential decay with distance from the 
origin of the system of coordinates that is effectively at the atomic nucleus, because u2 + v2 in the 
exponent is equivalent to distance 2 r from the nucleus.  With Z = 1, we plot a surface of this 
amplitude function that hence exhibits a spherical shape; its radius is about 2.45x10−10 m. The value 
ψ0,0,0 = 1.46x1013 m−3/2 that is chosen for this surface corresponds to both 1/100 of the maximum 
value of ψ0,0,0 at u = v = 0 and the volume of ψ0,0,02 that encloses about 0.995 electronic charge, as 
explained in part I of this series of papers [5]. The shape and size of this surface of ψ0,0,0(u,v,φ) in 
paraboloidal coordinates coincide exactly with the surface of ψ0,0,0(r,θ,φ) in spherical polar 
coordinates. The related surface of ψ0,0,02 = 1.46x1026 m−3 is necessarily also spherical and has a 
radius about 2.55x10−10 m; for both this amplitude function and its square, the spherical shape 
reflects the lack of angular dependence of the electrostatic attraction between the atomic nucleus 
and the electron in the absence of an electromagnetic field. 
 

 
FIGURE 2. Surface of real paraboloidal amplitude function ψ0,0,0 = 1.46x1013 m−3/2. Here, and in 
succeeding plots in three pseudo-dimensions, the unit of length along each coordinate axis is 
m; notation 2e−10 implies 2x10−10, and analogously, in this and succeeding figures. 
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 The surface of amplitude function ψ1,0,0, which incorporates Z = 1 here and henceforth, 
 

, 

 
in figure 3 exhibits a novel shape, unlike that of any amplitude function directly derived in 
spherical polar coordinates; the domain of φ is curtailed at 3 π/2 rad to reveal the interior so as to 
emphasize the ostensibly peculiar structure.  Although the overall shape is axially symmetric 
about axis z and is roughly spherical, the centre of that sphere is displaced from the origin by 
about 2x10−10 m along positive axis z; a nodal surface of zero amplitude, of paraboloidal shape, 
exists between a large positive lobe, extending mostly along positive axis z, and a small negative 
lobe, extending along negative axis z.  The surface of the square of this amplitude function, plotted 
for ψ1,0,02 = 5x1025 m−3, has a similar size and shape.  
 

 
FIGURE 3.  Surface of real paraboloidal amplitude function ψ1,0,0 = 1.46x1013 m−3/2; the surface 
is cut open to reveal the structure of the positive lobe (blue) extending mostly above plane z= 
0 and the negative lobe (red) extending along negative axis z. 

 
 Consistent with the complementary shapes of surfaces of u and v of the same value as seen 
in figure 1, the shape of the surface of ψ0,1,0 = 1.46x1013 m−3/2 is exactly the reflection of ψ1,0,0 across 
the plane z = 0: a small positive lobe hence extends along positive axis z and a large negative lobe 
along negative axis z; the centre of the surface of ψ0,1,0 is located about 2x10−10 m along negative axis 
z from the origin. For the real and imaginary parts of complex paraboloidal amplitude functions 
ψ0,0,1 and ψ0,0,−1 with equatorial quantum number m different from zero, the shapes and sizes of the 
surfaces of amplitude functions are essentially identical to those of the corresponding parts of 
ψ0,1,1(r,θ,φ) and ψ0,1,−1(r,θ,φ) in spherical polar coordinates, which are in turn identical to ψ0,1,0(r,θ,φ) 
apart from their orientation, except that the real part of ψ0,1,1(r,θ,φ) is symmetric about axis y 
whereas the real part of ψ0,0,1(u,v,φ) is symmetric about axis x, and vice versa for the imaginary 
parts.  The sum ψ0,1,02 + ψ1,0,02 + |ψ0,0,1|2 + |ψ0,0,-1|2 in paraboloidal coordinates plots as a perfect 
sphere, of radius about 6.4x10-10 m. 
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In figure 4, we show next the surface of paraboloidal amplitude function ψ2,0,0, according to 
this formula. 
 

 

 
Its surface exhibits three lobes, two of positive phase and one of negative phase between 

those two, with paraboloidal nodal surfaces between these lobes.  Apart from that lobal structure, 
the overall shape is roughly spherical, of radius 8x10−10 m, but the centre of the sphere is located 
along positive axis z about 4x10−10 m from the origin.  Amplitude function ψ0,2,0 is the reverse of 
ψ2,0,0, roughly spherical in shape but extending mostly along negative axis z and centred near z = 
−4x10−10 m. 
 

 
FIGURE 4. Surface of real paraboloidal amplitude function ψ2,0,0  =  1.46x1013 m−3/2; the largest 
and smallest lobes (sienna) have positive phase, the intermediate lobe (plum) has a negative 
phase. 
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which, like the preceding two functions, ψ2,0,0 and ψ0,2,0, corresponds to energy quantum number n 
= 3, is shown in figure 5.  In this case a small positive lobe of slightly oblate spheroidal shape is 
centred at the origin; a large positive lobe is a torus, with two pronouncedly spheroidal negative 
lobes directed along positive and negative axis z separated by the small positive lobe.  The overall 
shape is roughly oblate spheroidal; its square exhibits a similar shape. 

As an example of a novel complex amplitude function, we show in figure 6 the surface of 
the real part of ψ1,0,1 that conforms to this formula: 
 

 

 
Of four lobes, two are large and two are small, one each of each phase.  The shapes of lobes 

in this figure are common to ψ1,0,1, ψ1,0,−1, ψ0,1,1 and ψ0,1,−1 in their real or imaginary parts; they are 
symmetric across planes y = 0 or x = 0. For ψ1,0,1 or ψ1,0,−1, the large lobes lie mostly above plane z = 0, 
as for ψ1,0,0, whereas for ψ0,1,1 or ψ0,1,−1 the large lobes lie mostly on the negative side of plane z= 0, as 
for ψ0,1,0. The surfaces of the squares of ψ1,0,1 and ψ1,0,−1 are identical, and resemble the shapes of the 
surfaces of ψ1,0,0, shown in figure 3, and ψ0,1,0, except that there is a tunnel of zero electronic density 
along the polar axis, making the shapes toroidal. 
 

 
FIGURE  5.  Surface of real paraboloidal amplitude function ψ1,1,0 = 1.46x1013 m−3/2, cut open to 
reveal the interior structure; two negative lobes (cyan) are separated by a small positive 
oblate spheroidal lobe (brown) around the origin, all partially surrounded with a large 
positive torus (brown). 
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FIGURE 6. Surface of the real part of complex paraboloidal amplitude function ψ0,1,1 = 
1.46x1013 m−3/2; the positive lobes (khaki) and negative lobes (aquamarine) are symmetric with 
respect to plane xz. 

 
 In contrast, for complex paraboloidal amplitude functions ψ0,0,2 and ψ0,0,−2 in their real or 
imaginary parts, the surfaces have four lobes of equal size, extending along axes x and y for ψ0,0,2 
and ψ0,0,−2 in their real parts and between these axes for their imaginary parts, so rotated by π/8 rad 
from one another. As an example in figure 7, we display the shape of the surface of the real part of 
ψ0,0,2 that conforms to this formula. 
 

 

 

 
FIGURE 7. Surface of the real part of complex paraboloidal amplitude function ψ0,0,2 = 
1.46x1013 m−3/2; the lobes of positive phase (golden) lie along axis y and those of negative 
phase (magenta) along axis x. 

 = ψ , ,0 0 2
e7 µ

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
7
2
π3 u2 v2 e

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

−
e2 πµ ( ) + u2 v2

6 h2 ε
0 ( )cos 2 φ

162 h7 ε0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
7
2



THE HYDROGEN ATOM ACCORDING TO WAVE MECHANICS – II. PARABOLOIDAL COORDINATES 

Ciencia y Tecnología, 32(2): 25-39, 2016 - ISSN: 0378-0524 35 

 These surfaces of complex paraboloidal amplitude functions ψ0,0,±2 in their real and 
imaginary parts thus resemble the surfaces of spherical polar amplitude functions ψ0,2,±2(r,θ,φ), 
analogously to the respective surfaces of ψ0,0,±1 and ψ0,1,±1(r,θ,φ). The shapes of the surfaces of the 
squares of ψ0,0,2 and ψ0,0,−2 are identical to each other, and constitute oblate tori surrounding the 
polar axis. 

As a further example, figure 8 displays the surface of paraboloidal amplitude function ψ1,2,0, 
according to this formula, 

 

 

 
which exhibits four spheroidal lobes, two of each phase, and two tori, one of each phase, all 
symmetric about the polar axis. These features of tori and spheroids are typical of the shapes of 
surfaces of real paraboloidal amplitude functions with energy quantum number n greater than 3. 
 

 
FIGURE 8. Surface of real paraboloidal amplitude function ψ1,2,0 = 1.46x1013 m−3/2, cut open to 
reveal the interior structure; the large torus (yellow) has a negative phase and the small torus 
(magenta) a positive phase; of the four spheroidal lobes, the largest (magenta) has a positive 
phase, and the smallest also of positive phase (magenta) is between two larger spheroidal 
lobes of negative phase. 

 
IV. DISCUSSION 
 

Schroedinger developed this solution of his equation in paraboloidal coordinates [3] 
primarily as a method to treat, with perturbation theory that he concurrently developed, the Stark 
effect on the hydrogen atom, explicitly the shifting and splitting of spectral lines as a result of 
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hydrogen atoms being subjected to a uniform electric field.  To take such account, he added to the 
hamiltonian a term e F z = ½ e F (u2 – v2) for a uniform electric field of strength F in direction +z, i.e. 
so to define the polar axis; the additional term was treated as a perturbation of the system.  The 
consequent energy of a state corresponding to quantum numbers n1, n2 and m becomes  

 

+   

 
in which the first term is precisely the energy of that state in the absence of the field, F = 0; the 
second term shows the linear dependences on both that mild field and the difference between 
quantum numbers n1 and n2, i.e. the electric quantum number.  For n1 > n2, the electron is 
predominantly located with z > 0, consistent with the raising of the energy through the potential 
energy of the electron and the external field.  Figures 2 – 8 show that, for amplitude functions with 
n1 = n2, plane z = 0 is a plane of symmetry.  With increasing strength of the electric field, an 
additional term, quadratic in F, appears, and eventually, at large fields, further terms become 
significant.  In all cases the magnitude of the Stark effect depends also on the magnitude of 
equatorial quantum number m, as shown in the above formula for the linear Stark effect for 
instance.  Regarding an homogeneous magnetic field acting on a hydrogen atom 1H, the problem is 
complicated because of the presence of magnetic dipole moments associated with the intrinsic 
angular momenta of both electron and proton, known as spin.  Neglect of the effect of electron spin 
yields a variation of the energy of the atom linearly proportional to magnetic quantum number m, 
considered to be the normal Zeeman effect, but in practice the energy of interaction of the electron 
spin with its motion about the atomic nucleus is larger than the energy change due to the external 
magnetic field, up to flux density Bz = 10 T.  Taking into account also the purported electron spin 
involves a treatment that yields the anomalous Zeeman effect, but spherical polar coordinates are 
suitable for this calculation. 

Other contexts in which these paraboloidal coordinates are particularly useful include the 
photoelectric effect, the Compton effect and a collision of an electron with a H atom; in each case a 
particular direction in space is distinguished according to some external force [8]: that direction 
becomes the polar axis about which equatorial angle φ is measured with respect to a reference 
plane.  Although paraboloidal coordinates might appear to obscure the innate spherical symmetry 
of an isolated H atom, in nearly any practical experiment on these atoms, apparently apart from a 
measurement of the simple spectrum of an unperturbed system, that spherical symmetry is lost.  
Any chemical application of the amplitude functions of a H atom, in particular, inevitably involves 
an interaction with another chemical species, which defines a particular direction to become 
prospectively the polar axis.  From a chemical or physical point of view, a consideration of the H 
atom in paraboloidal coordinates seems more important than in spherical polar coordinates, but 
ellipsoidal coordinates are more practical than either spherical polar or paraboloidal.  We consider 
this matter further in Part III on ellipsoidal coordinates. 

Quantum numbers in each set n1, n2, m and each amplitude function that they designate, 
with their corresponding plots, are all parochial to this system of paraboloidal coordinates, just as 
quantum numbers k, l, m and their associated amplitude functions are parochial to the system of 
spherical polar coordinates, and have no meaning beyond the context of the same particular 
system of coordinates; equatorial quantum number fortuitously happens to be common to both 
systems because equatorial angle φ is likewise a common coordinate. With n = n1 + n2 + |m| + 1, the 
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total number of states or amplitude functions for n of given value is equal to that number n with m 
= 0 plus twice the sum with m ≠ 0,  

= n2 , 

 
the same as for spherical polar coordinates. 
 The preceding plots of surfaces of amplitude functions in paraboloidal coordinates show 
that, in general, these functions are asymmetric to the plane z = 0 or for which u2 = v2 unless n1 = n2; 
for n1 > n2 most electronic charge is located in the half space in which z > 0, and conversely for n1 < 
n2.  A comparison of plots of surfaces of amplitude functions in spherical polar and paraboloidal 
coordinates makes clear that the shapes and sizes of the surfaces of the real and imaginary parts of 
complex paraboloidal amplitude functions ψ0,0,1(u,v,φ) and ψ0,0,−1(u,v,φ) are essentially identical with 
those of the corresponding parts of ψ0,1,1(r,θ,φ) and ψ0,1,−1(r,θ,φ) in spherical polar coordinates, 
except that the real part of ψ0,1,1(r,θ,φ) is symmetric about axis y whereas the real part of ψ0,0,1 is 
symmetric about axis x, and vice versa.  For the paraboloidal and spherical polar amplitude 
functions, there are relations, not one to one as for the complex functions specified above, but as a 
sum or difference of amplitude functions in one system of coordinates to generate a particular 
amplitude function in another system with a common value of energy, and hence energy quantum 
number n.  This condition necessarily follows from the solution of the same hydrogen atom under 
the same conditions, for instance, a non-relativistic treatment in three spatial dimensions in the 
absence of an external field. As instances of formulae for interconversion of these functions 
between ψn1,n2,m(u,v,φ) and ψk,l,m(r,θ,φ), which correspond merely to transformations of coordinates, 
we state the following results for the sum, 
 

ψ0,1,0(r,θ,φ) + ψ1,0,0(r,θ,φ) = √2 ψ1,0,0(u,v,φ) 
 
or the inverse relation, 
 

√2 ψ1,0,0(r,θ,φ) = ψ0,1,0(u,v,φ)  + ψ1,0,0(u,v,φ)  
 
and for the difference, 
 

ψ0,1,0(r,θ,φ) − ψ1,0,0(r,θ,φ) = √2 ψ0,1,0(u,v,φ) 
 
and its inverse relation. 
 

√2 ψ0,1,0(r,θ,φ) = ψ0,1,0(u,v,φ)  − ψ1,0,0(u,v,φ) 
 

Analogous sums and differences – linear combinations of multiple functions in general – 
connect any amplitude function in spherical polar coordinates with appropriately selected 
functions in paraboloidal coordinates, provided that energy quantum number n is common to each 
set; for the above relations n = 2. Schroedinger mentioned this interconversion in his second lecture 
to the Royal Institution in London, 1928 [10]. The identity of surfaces of the separate real or 
imaginary parts of ψ0,0,1(u,v,φ) and ψ0,0,−1(u,v,φ) with those of the corresponding parts of ψ0,1,1(r,θ,φ) 
and ψ0,1,−1(r,θ,φ) fails to hold directly for amplitude functions with n > 2, but remains applicable to 
the appropriate linear combinations of complex amplitude functions of one coordinate system to 
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generate a particular complex amplitude function in another system.  Linear combinations of 
degenerate amplitude functions with common energy quantum number n, which are consequently 
likewise solutions of the same Schroedinger equation with the same energy, correspond to merely 
a rotation of the axes in the same system of coordinates or to another choice of system of 
coordinates [9].  Such degeneracy occurs in general when the amplitude equation is solvable in 
multiple ways – either for distinct systems of coordinates or within a single coordinate system 
variously oriented.  For l = 0 in spherical polar coordinates, the amplitude function is spherically 
symmetric, so having the same form for any orientation of the polar axis.  For paraboloidal 
coordinates, quantum number l for angular momentum is undefined, even though the component 
of angular momentum along the polar axis is well defined according to equatorial quantum 
number m; the only intrinsically spherically symmetric surface of an amplitude function, or of one 
of its lobes, occurs for n1 = n2 = m = 0, applicable to the ground state of this H atom with a plot 
shown in figure 2; in this case the solutions for the amplitude equation derived in spherical polar 
and paraboloidal coordinates are equivalent.  With the amplitude functions as defined above, we 
calculate an expectation value of the square of angular momentum L2 in its external motion for any 
state defined with quantum numbers n1, n2, m as  

 

, 

which accordingly depends on all three quantum numbers, like the energy of that state.  From that 
formula one might derive an expectation value for l, 
 

  =   h/ 2π , 

 
which clearly assumes no integer or half-integer value except when n1 = n2 = 0 giving l = |m|, and 
which might otherwise have little meaning as a quantum number; taking |m| as being a lower 
limit of l is clearly preferable.  The coefficient of h/2π in the above formula is thus effectively an 
expectation value of l for states associated with amplitude functions expressed in paraboloidal 
coordinates. For comparison, in spherical polar coordinates, the total square of angular 
momentum, hence a scalar quantity and having no directional dependence, has value

involving quantum number l, of which the numerical coefficient of  assumes an 

integer value only for l = 0.  For both systems of coordinates, the component Lz of angular 
momentum parallel to the polar axis is given by m h/ 2π, which is independent of quantum 
numbers n1 and n2 but limited by l. 
 The preceding results in the form of formulae for amplitude functions ψ(u,v,φ), their 
associated quantum numbers n1, n2, m, and the surfaces of those functions are all clearly parochial 
to these paraboloidal coordinates, just as the corresponding quantities for spherical polar 
coordinates are parochial to those coordinates.  An analogous conclusion is inevitable for the 
solution of Schroedinger's equation in ellipsoidal and spheroconical coordinates, presented in 
further papers of this series.   
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