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Abstract 
 

Schroedinger's temporally independent partial-differential equation is directly solvable in 
ellipsoidal coordinates to yield three ordinary-differential equations; with a common factor 
in equatorial angular coordinate φ as in spherical polar and paraboloidal coordinates, the 
product of their solutions contains confluent Heun functions in coordinates ξ and η that 
impede further calculations at present.  To provide plots of these functions, we apply 
published solutions from Kereselidze et al. in series to illustrate the dependence of the shape 
of the amplitude functions on distance d between the foci of the ellipsoids, between limiting 
cases of amplitude functions in spherical polar coordinates as d → 0 and in paraboloidal 
coordinates as d → ∞.  These ellipsoidal coordinates are most appropriate for a treatment of 
a hydrogen atom in a diatomic-molecular context. 
 

Resumen 
 
La ecuación parcial-diferencial independiente de la temporalidad de Schroedinger es 
solucionable en coordenadas elipsoidales para producir tres ecuaciones diferenciales 
ordinarias. Así como en las coordenadas esféricas polares y paraboloidales, ella tiene otro 
factor en la coordenada angular ecuatorial φ, cuyo producto de su solución contiene 
funciones Heun confluentes en coordenadas ξ y η que impiden cálculos adicionales en la 
actualidad. Las soluciones publicadas de Kereselidze et al se aplican en serie para 
proporcionar gráficos de estas funciones e ilustrar la dependencia de la forma de las 
funciones de amplitud en la distancia d entre los focos de los elipsoides, entre casos 
limitantes de funciones de amplitud en coordenadas polares esféricas cuando d → 0 y en 
coordenadas paraboloidales cuando d → ∞. Estas coordenadas elipsoidales son las más 
apropiadas para un tratamiento de un átomo de hidrógeno en un contexto diatómico-
molecular. 
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I. INTRODUCTION 
 
 In Schroedinger’s four articles in a series of title Quantisation as a Problem of Proper Values 
[1,2,3,4] through which he introduced wave mechanics, he applied his partial-differential equation 
to the solution of the hydrogen atom in spherical polar and paraboloidal coordinates, and specified 
a method to calculate the frequencies and intensities of spectral lines.  As the type of central field of 
force in the hydrogen atom is coulombic, the variables in the partial-differential equation are 
separable in not only spherical polar and paraboloidal coordinates but also ellipsoidal and 
spheroconical coordinates.  In each case, the solution of Schroedinger's partial-differential equation 
independent of time yields three ordinary-differential equations, one for each spatial variable in 
the definition of a space of three dimensions.  In this part III of a series of articles devoted to the 
hydrogen atom with its coordinates separable in these four systems, we state the temporally 
independent partial-differential equation and its solution in ellipsoidal coordinates, and provide 
plots of selected amplitude functions as surfaces corresponding to a chosen value of amplitude. As 
the dependence on time occurs in the same manner in all systems of coordinates in which the 
Schroedinger equation is separable, we accept the results from part I [5], and avoid that repetition.  
Although the equations governing the form of the amplitude functions are here, of necessity, 
defined in coordinates according to an ellipsoidal system, we view the surfaces of these amplitude 
functions invariably in rectangular cartesian coordinates: a computer procedure (in Maple) 
translates effectively from the original system of coordinates in which the algebra and calculus are 
performed to the system to which a human eye is accustomed. 
 
II. SCHROEDINGER’S TEMPORALLY INDEPENDENT EQUATION IN ELLIPSOIDAL 
COORDINATES 
 
 We first relate these three mutually orthogonal ellipsoidal coordinates ξ, η, φ to cartesian x, 
y, z and spherical polar coordinate r as algebraic formulae in direct relations.  The system of 
ellipsoidal, or prolate spheroidal, coordinates, which Pauling and Wilson [6] called confocal 
elliptical coordinates, has two centres, corresponding to the foci of a respective ellipsoid; the 
distance between these two centres we denote d.  For distances ra and rb of an electron from one or 
other centre, we define two coordinates ξ and η, which are dimensionless. 
 

 

The relations between these dimensionless distance coordinates ξ and η, with equatorial 
angle φ, and cartesian and polar coordinates follow. 
 

 ,  ,  

,     ,    

 
The domains of these variables are 1 < ξ < ∞, ˗1 < η < +1, 0 < φ < 2 π.  We take an atomic nucleus of 
electric charge +Z > 0 as being located at a centre of coordinates with ξ = 1 and η = ˗1; the other 
focus at distance d has coordinates ξ = 1 and η = 1 and is a dummy centre with Z = 0, which might, 
however, become the location of another atomic nucleus in the case of a diatomic molecule, such as 
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H2+.  Surfaces of constant values of these coordinates are for ξ an ellipsoid, for η an hyperboloid of 
one sheet, and for equatorial angle φ a half-plane extending from polar axis z, the latter as in both 
spherical polar and paraboloidal coordinates.  Although coordinates ξ and η are both 
dimensionless, one might consider ξ to be quasi-radial and η to be quasi-angular.  For use within 
the volume element in subsequent integrals, the jacobian of the transformation between cartesian 

and ellipsoidal coordinates, as defined above, is .  Whereas these coordinates have 

been described as prolate spheroidal, the presence of a characteristic ellipsoid with its two foci 
makes preferable a description as ellipsoidal coordinates.  These coordinates are illustrated in 
figure 1. 

 
 

FIGURE 1.  Surfaces of constant ellipsoidal coordinates:  for the ellipsoid, ξ = 1.2 units, red; 
for the hyperboloid, η =  π/4 units, blue; for the half-plane, equatorial angle φ = π/3 rad green. 

 
 A separation of the coordinates of the centre of mass of the H atom produces reduced mass 
µ of the system that is distant r from the origin, to supplant distance r between the electron and the 
atomic nucleus at one centre of the ellipsoid in the limit of infinite nuclear mass. Schroedinger’s 
temporally independent equation in explicit SI units then contains within terms on the left side of 
the equality an electrostatic potential energy and first and second partial derivatives of an assumed 
amplitude function ψ(ξ,η,φ) with respect to spatial coordinates ξ, η, φ within an hamiltonian 
operator H ψ; the right side of the equality comprises a product of parameter energy, E, which is 
independent of coordinates, with the same amplitude function.  The resultant form, as Η(ξ,η,φ) 
ψ(ξ,η,φ)  = E ψ(ξ,η,φ), resembles an eigenvalue relation: 
 

( ) − η2 ξ2 d3

8
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Apart from fundamental physical constants electric permittivity of free space ε0, Planck constant h 
and protonic charge e, there appear parameters Z for atomic number – Z = 1 for H – and µ for the 
reduced mass of the atomic system, practically equal to the electronic rest mass me. After 
separation of the variables and solution of the three consequent ordinary-differential equations 
including definition of the separation parameters or integration constants, the eventual full 
solution of the above equation has exactly this form [7]. 
 

 

 
In this formula some clusters of fundamental constants have been replaced with Bohr radius a0, 

 
that invariably appears as a ratio with distance d to maintain the correct dimensions; normalizing 
factor N ensures that 
 

∫ ψ(ξ, η, φ)∗ ψ(ξ, η, φ) dvol = 1, 
 

in which dvol is a volume element containing the jacobian specified above; the implied triple 
integration is over all space.  An asterisk as raised suffix of an amplitude function, so ψ∗, implies a 
complex conjugate of ψ such that, wherever i = √−1 appears in ψ, −i appears in ψ∗. The presence of 
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i in an exponential factor as product with equatorial angle φ signifies that this formula is complex, 
thus containing real and imaginary parts.  Coefficient c that equals any complex number of 
magnitude unity, such as a fourth root of unity – i.e. ±1, ±√−1, occurs because the Schroedinger 
equation independent of time is a linear homogeneous partial-differential equation, or equally 
because the temporally independent Schroedinger equation has the form of an eigenvalue relation, 
as shown above. The conventional choice c = 1, which is arbitrary and lacks physical justification, 
signifies that some solutions ψ(ξ,η,φ) as amplitude functions from the temporally independent 
Schroedinger equation might appear in a purely real form; with a mathematically valid alternative 
choice c = i, some amplitude functions might be entirely imaginary, but most would still be 
complex and thus alien to physical space.  Choosing c = −1 or −i merely reverses the phase of an 
amplitude function or its constituent parts.  Parameters that appear in the solution but not the 
partial-differential equation take discrete values, imposed by boundary conditions, as follows: m is 
called the equatorial, or magnetic, quantum number that assumes values of only negative and 
positive integers and zero, and that arises in the solution of the equatorial angular equation to 
define Φ(φ); n denotes the energy quantum number, which is incorporated in the formula at 
several locations on comparison with the corresponding solutions in spherical polar coordinates.  
The third quantum parameter λ that arises in this solution is unique to these ellipsoidal 
coordinates; it occurs only in the fifth argument of each confluent Heun function, so for these 

functions of ξ and η separately but in the same form.  Apart from factor  that also 
generally contributes a complex character to Η(η), the confluent Heun function containing variable 
η might assume only real values, whereas the Heun function containing variable ξ definitely 
assumes complex values, so having real and imaginary parts, in addition to the real and imaginary 
parts resulting from i m φ in the exponential term.  
 
III. GRAPHICAL REPRESENTATIONS OF AMPLITUDE FUNCTION ψ(ξ ,  η ,  φ)  
 
 Not only for comparison with graphical representations of amplitude functions calculated 
in coordinates of other systems but also to present quantitatively accurate shapes and sizes of these 
functions, we display here some selected examples.  As a plot involving three independent 
variables – spatial coordinates ξ, η, φ – and dependent variable ψ(ξ,η,φ) would require four 
dimensions, the best way to proceed with two dimensions, or three pseudo-dimensions, is to 
exhibit a surface of constant ψ at a value selected to display the overall spatial properties of a 
particular amplitude function in a satisfactory manner. As our following figures demonstrate 
plainly, the shapes of these ellipsoidal amplitude functions depend markedly on distance d 
between the centres of the ellipsoids.  In the two limiting cases, as d → 0, the shape of an amplitude 
function tends to a shape of a corresponding function in spherical polar coordinates, whereas, as d 
→ ∞, the shape tends to a shape of a respective function in paraboloidal coordinates.  With the 
direct confluent Heun functions as specified above, these features are depicted with difficulty 
because the confluent Heun function of at least ξ, in the general formula above, has complex 
values, in addition to the complex character dictated in relation to equatorial angular coordinate φ. 
Working with these confluent Heun functions is hence at present difficult; for this reason we 
present figures prepared with ellipsoidal amplitude functions indirectly obtained through solution 
of Schroedinger's equation in series [8], rather than our direct solution stated above.  These 
functions ψnξ,nη,m are characterised with three quantum numbers --  nξ, nη, m, of which equatorial 
quantum number m has the same significance as for amplitude functions in spherical polar and 
paraboloidal coordinates; the values of nξ and nη take non-negative integers, and m positive and 
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negative integers and zero, as before.  The relation for energy quantum number is n  =  nξ + nη + |m| 
+ 1.  When d → 0, nξ → radial quantum number k for spherical polar coordinates, nη → l − |m|; 
when d → ∞, nξ → paraboloidal quantum number n1 and nη → n2 [8]. According to the nature of the 
preparation of these amplitude functions, their algebraic form contains long expressions in their 
algebraic normalizing factors involving polynomials in d to inverse powers, except ψ0,0,0(ξ,η,φ).  In 
this formula and all succeeding formulae and plots, atomic number is set to Z = 1, so appropriate 
directly to the hydrogen atom. 
 

 

 
The plot of this surface, in figure 2, has the form of a perfect sphere. 
 

 
 

FIGURE 2. Surface of ψ0,0,0 = 1/100 a0-3/2; as parameter d is taken in unit a0, the distance along 
each axis is expressed also in this unit, in this and succeeding plots of surfaces. 

 
As in figures of surfaces of amplitude functions in spherical polar and paraboloidal coordinates in 
preceding parts of this series [5,9], this surface of an amplitude function at a stated value of that 
function is chosen such that the square of the amplitude function contains about 0.995 of the total 
electronic charge; this criterion is applicable to all further plots of surfaces presented in this article.  
The plot in figure 2 is actually formed with d = 1/10 a0, because a numerical value of d must be 
provided to make such a plot.  The shape, spherical, of this surface of constant ψ is invariant with 
d; the size decreases only slightly, in unit a0, as d increases to 200 a0; the reason is that, although 
variable η has a fixed domain ˗1..1, the same for each plot, the extent of variable ξ to make the plot 
varies greatly.  For instance, for d = a0/10, the necessary extent of ξ is 1..90, whereas for d = 200 a0, 
the domain is only 1..1.041.  Although all surfaces appear to have apparently pointed extremities 
along polar axis z, this effect is likely a distortion, due to a numerical artifact of the plotting routine 
with finite numerical accuracy for poorly behaved functions in terms of awkward arguments and 
of the conversion between ellipsoidal and cartesian coordinates. This amplitude function ψ0,0,0 is 
the only one corresponding to energy quantum number n = 1. 
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 For further amplitude functions of which the shape varies markedly with distance d, we 
exhibit a few surfaces at varied values of d, to illustrate the limiting and intermediate cases.  As 
noted above, the limiting case as d → 0 is a respective surface of an amplitude function in spherical 
polar coordinates; as d → ∞, the respective surface is that in paraboloidal coordinates. 
 For the first instance, at distances d/a0 = 1/10, 1.55 and 20 between the foci of the ellipsoids, 
in figures 3a, 3b and 3c respectively we exhibit ψ0,1,0; this formula is expressed with symbolic 
normalizing factor N0,1,0 because its explicit algebraic formula [8], which was used in the 
calculations to form the plot, is too long for practical presentation here. 

 

 

 

 

3a 3b 

 
3c 

 
FIGURE 3. Surfaces of ψ0,1,0 = 1/100 a0-3/2 at, from top down, a) d = 1/10 a0, b) d = 1.55 a0 and c) d 
= 20 a0; the positive lobe is red and the negative lobe is blue. 
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 The shape of ψ0,1,0 at d = 1/10 a0 is practically indistinguishable from that of ψ0,1,0(r,θ,φ) in 
spherical polar coordinates as shown in figure 8 of part I [5]: the two lobes are nearly 
hemispherical with rounded edges, and have nearly the same size with a nodal plane of zero 
amplitude between them.  At d = 20 a0 the shape is nearly that of ψ1,0,0(u,v,φ), as shown in figure 3 of 
part II [9].  The intermediate case at d = 1.55 a0 simply shows that the negative lobe contracts 
gradually and the volume of the positive lobe expands with increasing d. 
 The next amplitude function, ψ1,0,0,  

 

 
again expressed with symbolic normalizing factor of algebraic form that becomes converted to the 
appropriate numerical value, displays a different transition from one limit to the other, as shown 
in figures 4a, 4b, 4c at distances d/a0 = 1/10, 1.55 and 20 respectively. 
 

  
4a 4b 

 
4c 

 
FIGURE 4. Surfaces of ψ1,0,0 = 1/100 a0-3/2 at, from top down, a) d = 1/10 a0, b) d = 1.55 a0 and c) d 
 = 20 a0; the positive lobe is brown and the negative lobe is yellow.  The surfaces in 
 figures 4a and 4b are cut open to reveal the internal structure. 
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The shape of the surface at d = 1/10 a0 in figure 4a is essentially identical with that of ψ1,0,0(r,θ,φ) in 
figure 7 [5], having one small and nearly spherical positive lobe totally enclosed within a second, 
nearly spherical, shell of negative phase.  At d = 20 a0, the shape is nearly that of ψ0,1,0(u,v,φ), just the 
reverse of that shape in figure 3c along axis z.  The intermediate shape in figure 4b is chosen at d = 
1.55 a0 because at that distance a minute gap opens in the outer shell at the top of the negative lobe, 
through which the inner positive lobe eventually emerges to be become entirely external, as in 
figure 4c.  These two amplitude functions ψ0,1,0 and ψ1,0,0, with ψ0,0,1 depicted below, have common 
energy quantum number n = 2. 
 According to the solution in series [8], the next three amplitude functions involve the roots 
of a cubic equation, which, according to Viète's method, are expressed algebraically explicitly in 
terms of trigonometric functions and their inverses, specifically cosine and arc cosine; their forms 
[8] become consequently too voluminous for convenient presentation here, even with symbolic 
normalizing factors that would be even more extensive in explicit algebraic presentation.  We 
hence merely present appropriate figures depicting the surfaces of these functions under the same 
conditions as above, first ψ0,2,0 in figures 5a for d = a0/10, 5b for d = 5 a0 and 5c for d = 20 a0.  
 

 

 

5a 5b 

 
5c 

 
FIGURE 5. Surfaces of ψ0,2,0 = 1/100 a0-3/2 at, from top down, a) d = 1/10 a0, b) d = 5 a0 and c) d = 
 20 a0; the positive lobe is plum colour and the negative lobe is maroon.   
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Whereas, at d = 1/10 a0, the two positive lobes have practically equal size on either side of a 
negative torus, similar to ψ0,2,0(r,θ,φ) in figure 11 [5], at  d = 20 a0, the torus becomes transformed 
into an inverted bowl, with a small prolate spheroidal lobe below it and above it a large lobe of 
somewhat oblate spheroidal shape, as in figure 4 [9].  Here the intermediate case is chosen at d = 5 
a0, because in that condition the negative lobe exhibits only a small orifice that becomes closed 
completely at d = 20 a0.  Most surface at d = 20 a0 lies above plane xy at z = 0. 
 The next amplitude function is ψ2,0,0 in figure 6a, b, c, with surfaces plotted at d/a0 = 1/10, 1 
and 20. 
 

 
 

6a 6b 

 
6c 

 
FIGURE 6. Surfaces of ψ2,0,0 = 1/100 a0-3/2 at, from top down, a) d = a0/10, b) d = a0 and c) d = 20a0; 
the positive lobes are navy blue and the negative lobe is tan.  In figure 6a, all surfaces are cut 
open to reveal the interior structure; in figure 6b, only the negative lobe is cut open. 

 
At distance d = 1/10 a0, figure 6a shows a nearly spherical inner lobe of positive phase 

surrounded by a nearly spherical shell of negative phase; their centres are at approximately the 
origin of the system of cartesian coordinates.  At d = a0, the inner and positive sphere has just 
emerged from its negative surrounding lobe at the top, but a second positive lobe of bowl shape 
appears below the negative lobe.  At d = 20 a0, the upper positive lobe has a prolate spheroidal 
shape, partially below the rim of a negative lobe of bowl shape, and the lower positive lobe has 
almost a hemispherical shape, just the reverse of figure 5c along polar axis z.  Most surface of this 
amplitude function is below plane xy at z = 0. 
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 The next amplitude function is ψ1,1,0, of which surfaces in figures 7a,b,c,d appear at d = a0/10, 
a0, 5 a0 and 20 a0, respectively. 
 

  
7a 

 
7b 

  
7c 
 

7d 

FIGURE 7. Surfaces of ψ1,1,0 = 1/100 a0-3/2 at, from top down, a) d = 1/10 a0, b) d = a0, c) d = 5 a0 
and d) d = 20 a0; the positive lobes have coral colour, the negative lobes aquamarine. 

 
The total surface of ψ1,1,0 = 1/100 a0-3/2 at d = 1/10 a0 comprises four lobes, two of each phase, 

one small lobe of each phase between the other small lobe and a large lobe; this pattern correlates 
with ψ1,1,0(r,θ,φ).  At d = a0, the upper negative lobe increases in breadth, but at d = 5 a0 it becomes a 
torus surrounding the upper part of a positive lobe; at d = 20 a0 that torus has moved to plane xy 
nearly at z = 0, at which it surrounds the other small negative lobe that is nearly spherical at the 
origin. The two positive lobes have prolate spheroidal shapes and are nearly symmetrically 
disposed across plane xy at z = 0.  The latter shape correlates with ψ1,1,0(u,v,φ) in paraboloidal 
coordinates.  The latter three amplitude functions have energy quantum number n = 3.  
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 Amplitude function ψ0,0,1, or equivalently ψ0,0,˗1, has both real and imaginary parts, 
according to the presence of an exponential factor containing i m φ with equatorial quantum 
number m = 1, in which i = . 

 

 
Figure 8 presents the imaginary part of this amplitude function, of which the shape and 

size of the surface are practically invariant with varying distance d. 
 

 
FIGURE 8. Surface of the imaginary part of ψ0,0,1 = 1/100 a0-3/2 at d = 1/10 a0; the positive lobe is 
magenta and the negative lobe is cyan. 

 
This surface is characteristic of  ψ0,0,1(r,θ,φ) or  ψ0,0,-1(r,θ,φ),  and equivalently ψ0,0,1(u,v,φ) or 

ψ0,0,-1(u,v,φ), in either real or imaginary part.  Although all preceding figures show surfaces of the 
depicted amplitude functions of which the surfaces are axially symmetric about the polar axis z, 
this surface is axially symmetric about cartesian axis y; its real counterpart is analogously axially 
symmetric about axis x, and the real and imaginary parts of ψ0,0,˗1 have analogous spatial 
dispositions axially symmetric about the same axes x and y, respectively. 

 
IV. DISCUSSION 
 
 The three or four plots in each composite figure 3 - 7 demonstrate clearly how the familiar 
shape of the surface of an ellipsoidal amplitude function [5] for distance d between foci nearly 
zero, which resembles a surface of an amplitude function in spherical polar coordinates, 
transforms into a much less familiar shape resembling the surface of a corresponding amplitude 
function in paraboloidal coordinates [9], as d increases to a large value.  The number of such 
amplitude functions that are available for this purpose is limited at present because of the problem 
of the complex nature of confluent Heun functions in the directly derived amplitude functions and 
because of the intractability of explicit algebraic solutions of quartic polynomials in the indirectly 
derived functions [8].  When one is able to plot real amplitude functions in both limiting cases and 
deduces the appropriate correlation, it is not difficult to imagine the course of the gradual 
transformation between those two limiting cases with increasing or decreasing distance d between 
the foci of the ellipsoids; the two limiting cases must conform to the same value of energy 
quantum number n.  As all these amplitude functions are common to the hydrogen atom, they 
must be convertible from one form, in one coordinate system, to another form in a separate 
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coordinate system; this property would enable further explicit formulae to be generated through a 
transformation of coordinates, but the resulting expressions likely have a complicated algebraic 
form. 
 Much interest in the hydrogen atom treated in ellipsoidal coordinates arises because of the 
features pertinent to a system with two coulombic centres, such as H2+, for which ellipsoidal 
coordinates have long been applied [6].  Following the pioneering work of Burrau [10] and Wilson 
[11,12], Teller recognised that the amplitude functions from the solution of Schroedinger's equation 
in ellipsoidal coordinates to treat interatomic interactions in a diatomic molecule were applicable 
also to the hydrogen atom itself [13]. These ellipsoidal amplitude functions that result from the 
solution of Schroedinger's equation, either directly containing confluent Heun functions as 
presented above or indirectly through solution in series [8], are hence most appropriate for the 
treatment of a hydrogen atom, or analogous atomic ion with one electron, interacting with a point 
charge, located at the dummy focus; in such a case the atomic amplitude function, or atomic 
orbital, becomes de facto a molecular orbital. Other applications arise in an investigation of 
diatomic molecules or their ions in Rydberg states, or in other excited states [14]. As these 
confluent Heun functions become developed, these applications will become increasingly practical 
with the direct solutions of the Schroedinger equation. 
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