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Abstract 

 
The theoretical and experimental evidence regarding the use of (J + ½)2 and J (J + 1) as a functional 
in formulae for rotational term values in the spectral analysis of a diatomic molecule in electronic 
state 1Σ is scrutinised. The infrared spectra of HCl serve as examples of the application of the two 
functionals. The total evidence indicates that (J + ½)2  is preferable to J (J + 1) for the stated purpose, 
confirming Mulliken’s statement in 1930. 

 
Resumen 

 
Se analiza la evidencia teórica y experimental sobre el uso de (J + ½)2 y J (J + 1) como un funcional 
en las fórmulas para los valores de términos rotacionales en el análisis de los espectros de una 
molécula diatómica en el estado electrónico 1Σ. El espectro infrarrojo de HCl sirve como ejemplo de 
la aplicación de los dos funcionales. La total evidencia indica que (J + ½)2  es preferible a J (J + 1) 
para el uso en el análisis de los espectros, una confirmación de la indicación de Mulliken en 1930. 
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I. ANALYSIS 
 

Our concern here is with the rotational energy or term values of diatomic molecules, as prototypical 
of general free molecules, in electronic states of class 1Σ; the notation for electronic states of other classes 
can be modified in an appropriate manner.  In accordance with  current standard notation in spectral analysis, 
here we use exclusively symbols J for rotational quantum number and v for vibrational quantum number, 
regardless of the symbols employed in the original sources. 
 In his book Molecular Spectra and Molecular Structure, Herzberg (1950) wrote “Some authors prefer 
to use, instead of 
 

Fv(J) = Bv J (J + 1) – Dv J2 (J + 1)2 + … 
 
the equation 
 

Fv(J) = Bv (J + ½)2  – Dv (J + ½)4 + … 
 
which differs from the former equation only by a small additive constant and by a very slight alteration 
in the meaning of Bv (the new Bv being the old Bv - ½ Dv). For the interpretation of the spectra this difference 
is quite unimportant, but it has to be kept in mind in comparing term values taken from different papers.” 
Herzberg cited no source in this instance, but elsewhere he cited books by Kemble et alii (1927), by Kronig 
(1930) and by Jevons (1931). The status of the usage of a functional for rotational terms was unsettled during 
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the composition, from 1924 to 1926, of the chapters in the book by Kemble et alii (1927), but the superiority 
of fitting spectra with (J + ½)2, suggested (Brand, 1995, p.176) by Einstein in 1915, seems to have prevailed. 
Kronig appears to have employed J (J + 1) in some locations (Kronig, 1930, p. 39) and (J + ½)2 in others 
(Kronig, 1930, p.31). Although Jevons (1931, p. 24) mentioned (J + ½), he applied J (J + 1) almost 
exclusively elsewhere. J (J + 1) or (J + ½)2 in those formulae for the rotational term values replaces merely 
J2 in the preceding quantum theory (Schwarzschild, 1916). Both the latter books (Jevons, 1931; Kronig, 
1931) were published after Mulliken’s (1930a, p. 65) report in which he stated “It is probable that (J + ½)2 
should be used rather than J (J + 1) in [an equation for general term values] and in similar equations, but the 
difference between the two expressions is negligible for practical purposes, and the form J(J + 1) gives 
simpler formulas for the frequencies of band lines”; in a subsequent report Mulliken (1930b, p. 621) actually 
applied (J + ½)2 rather than J (J + 1), consistent with previous experimental work in which he had proved the 
necessity of half-integer vibrational quantum numbers (Mulliken, 1924). In practice, the formulae for the 
wavenumbers of lines in a band are no simpler with J (J + 1) than with (J + ½)2 as functional, cf. the 
appendix; with contemporary methods of fitting spectra any such distinction is of negligible concern. 
 As an instance in which ½ appears in a formula for rotational terms we recall the report of Colby 
(1923) on the analysis of the absorption spectrum of HCl in the mid- and near-infrared regions, in which 
he stated this formula for the energies of rotational states, 
 

WvJ = Wv0 + h Bv (J + ½)2 – h β (J + ½)4 

 
involving Planck constant h and parameters Bv and β that have frequency units. In the conclusion of this 
paper (Colby, 1923), the author stated “On the whole one may feel that this is satisfactory evidence of the 
necessity for introducing half parameter numbers into the formulations of these bands”. 
 There is no question that, for the hydrogen atom, the squared angular momentum should be based on 
l (l + 1), as Schroedinger (1926a) obtained, but a diatomic molecule is an entity with properties distinct from 
those of a hydrogen atom, even if there be a formal correspondence between the Coulomb problem and a 
quadratic harmonic oscillator in multiple dimensions (Kostelecky et alii, 1985). In the second paper in the 
series Quantisation as a Problem of Proper Values, Schroedinger (1926b) solved his equation for 1) a ‘Planck 
oscillator’ – i.e. a canonical linear harmonic oscillator with a quadratic dependence of the potential energy on 
the displacement from an equilibrium condition, 2) a rotor with a fixed axis that produced an energy 
proportional to the square of a quantum number, 3) a rigid rotor with a free axis that produced a rotational 
energy based on functional J (J + 1) and 4) a non-rigid rotor as a model of a diatomic molecule that produced 
again an energy dependent on the same functional. Elsewhere, Schroedinger (1926e) subsequently wrote “It 
is well known that so-called half-quantum numbers are actually supported by the experimental evidence on 
most of the simple band spectra, and are probably contradicted by none of them. Mr. Fues … has worked out 
the band theory of diatomic molecules in detail, taking into account the mutual influence of rotation and 
oscillation and the fact that the latter is not of the simple harmonic type. The result is in exact agreement with 
the ordinary treatment except that the quantum numbers become half-integer also in all correction terms.” As 
a basis of his solution of Schroedinger’s equation for an oscillator, Fues (1926) applied the potential-energy 
function of Kratzer (1920), which is expressed in simplified form as 
 

V(R) = h c D e (1 – Re/R)2  

 
Therein appear speed c of light in vacuo, R that would represent the instantaneous internuclear 

separation of a diatomic molecule, equilibrium internuclear distance Re and energy h c D e at the 

dissociation limit relative to the energy for R = Re. The results of those calculations yielded an expression for 
vibration-rotational terms that includes (J + ½) to even powers (Fues, 1926; Kronig, 1931). 
 The quadratic linear harmonic oscillator that Schroedinger (1926b) treated is a poor model for a real 
diatomic molecule because, in addition to states of infinite number and thus no limit that would correspond 
to a molecular dissociation into atomic fragments, rotational parameter Bv for a particular vibrational state 
increases appreciably – at least 3 per cent – with each increment of vibrational quantum number v, contrary 
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to the decrease that is found for any real diatomic molecule; for instance, for HCl the decrease is at least 3 
per cent. A superior model function is the oscillator of Davidson (1932), of which the potential energy has 
this form in terms of spectral parameters ωe and Be: 
 

V(R)  =  ωe
2 (R/Re   –  Re/R)2 /16 Be 

 
Although this function still has equal intervals between states of adjacent energy such that it qualifies 

directly as an harmonic oscillator, and has hence states of infinite number, its rotational parameters are 
constant, independent of v – i.e. this harmonic oscillator is effectively also a rigid rotor. The most notable 
property of this oscillator is that it automatically generates a contribution ¼ Be to the energy of each state 
characterised with vibrational quantum number v. Another property of significant interest is that matrix 
elements of R, to the square of which the intensities of vibrational transitions are proportional, are finite for 
Δv > 1; the magnitudes of those matrix elements for transitions from v = 0 are comparable with those of HCl 
for its overtone bands. Davidson’s (1932) oscillator is clearly a model preferable to that of the quadratic 
oscillator for practical purposes. 
 The ultimate treatment of a rotating oscillator to serve as a quantitative model of a diatomic molecule 
is due to Dunham (1932b) who applied a general polynomial function for vibrational potential energy 
involving coefficients aj with reduced displacement variable x = (R  ̶  Re)/Re: 
 

V(x) = a0 x2 (1 + ∑ aj xj )                                                                                                                                                       
.                 j=1 

Dunham (1932b) expressed the vibration-rotational terms, which he obtained with a JBKW method 
(Dunham, 1932a) but which are equally well and more conveniently derived with hypervirial perturbation 
theory (Fernandez and Ogilvie, 1990), as double sums over (v + ½) and J (J + 1), the latter being an assumed 
functional form not explicitly justified: 
 

Ev,J   =  ∑ ∑ Yk,l (v + ½)k [J(J + 1)]l   
k=0  l=0                       . 

 
Coefficient Y0,0, which, with ½ Y1,0, is obviously a contribution to the residual (or ‘zero-point’) energy, has, 
apart from contributions beyond least order, exactly the following form as expressed (Dunham, 1932b) in 
terms of coefficients a1 and a2 in the above function for potential energy, 
 

Y0,0  =  Be ( − 7 a1
2 / 32  +  3 a2 / 8) 

 
but is expressible alternatively (Bunker, 1968) in terms of traditional spectral parameters as 
 

Y0,0  ≈  ¼ Be + αe ωe /12 Be + αe
 2 ωe

 2/144 Be
3  − ¼ ωe xe  

 
The first term of this formula is hence precisely the difference between the leading terms in the 

two formulae for rotational terms quoted from Herzberg’s (1950) book above; if that quantity ¼ Be be 
transferred from Y0,0 to Y0,1 so that the double sum contains (J + ½)2 instead of J(J + 1), the three 
remaining quantities in Y0,0 tend to cancel one another (Ogilvie, 1987). After such a transfer to modify the 
nature of Dunham’s double sum, the nature of Y0,1 would alter slightly (Herzberg, 1950), and the numerical 
values of other fitted coefficients Yk,l with l > 0 would also be only slightly altered, but not their physical 
significance; the modified definition of coefficient Y0,0 to second order would become 

 
Y0,0  =  Be (− 7 a1

2 /32 + 3 a2 /8 − ¼ ) 
 

 From an experimental point of view, for any spectra involving changes of rotational quantum 
number J between combining states, the presence or absence of ¼ Be in the functional is immaterial because 
this quantity cancels in the difference between the rotational terms of those states. Although one might derive 
directly J (J + 1) from such an empirical analysis of rotational spectra (Monagan and Ogilvie, 1987), in fact 
J2 + J + n is compatible with such an analysis, with n taking an arbitrary numerical value; the only two 
values of n worth considering are 0 and ¼. One might attempt to measure some transition of isotopically 
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related molecules to a state involving no rotational angular momentum. The threshold energies, expressed as 
spectral terms, to dissociate, for instance, HCl and DCl, into their atomic fragments have been accurately 
measured (Martin and Hepburn, 1998; Hu et alii, 2003) as follows. 
  

1H35Cl  X 1Σ+, v = J = 0  →  1H 2S½  +  35Cl 2P3/2 ,     E = (35748.2 ± 0.8) cm−1, 
2H35Cl  X 1 Σ +, v = J = 0  →  2H 2S½  + 35Cl 2P3/2 ,     E = (36161.3 ± 0.9) cm−1, 

 
The difference, (413.1 ± 1.2) cm−1, between these two values is expected to correspond to the 

difference of the total residual energies, which would hence consist of both vibrational and rotational 
contributions if the latter exist (Ogilvie, 2014). The sum with evaluated Dunham coefficients (Uehara et alii, 
2004) involving only the vibrational terms, 

      5                                                                                                                                                                     
 G(v) = ∑ Yk,0 (v + ½)k  

      k=0 
 
for v = 0 yields (1483.88 ± 0.1) cm−1 for 1H35Cl and (1066.61 ± 0.1) cm−1 for 2H35Cl. Their difference, (417.3 
± 0.1) cm−1, is outside (3.5 σ) the experimental uncertainty of the difference of the measured terms for 
dissociation into neutral atoms, and likewise outside the uncertainty of the difference, (442.9 ± 0.9) cm−1, of 
the measured terms for dissociation into ions with account taken of the difference, (29.8 ±0.1) cm−1, between 
the ionisation terms for 1H and 2H (Ogilvie, 2014; Uehara et alii, 2004). 
 

1H35Cl  X 1 Σ +, v = J = 0 → 1H+ 1S0  + 35Cl− 1S0 ,      E = (116288.7 ± 0.6) cm−1, 
2H35Cl  X 1 Σ +, v = J = 0 → 2H+ 1S0  + 35Cl− 1S0 ,      E = (116731.6 ± 0.7) cm−1, 

 
From these ionisation terms, the preceding dissociation terms were derived (Martin and Hepburn, 

1998; Hu et alii, 2003). There is hence no satisfactory quantitative agreement, within the experimental 
uncertainties, between the calculated residual energies and the difference between the measured dissociation 
energies; this result is independent of whether quantity ¼ Be be included either within Y0,0 or taken into 
account with functional (J + ½)2. Other and similar comparisons (Hu et alii, 2003) are likewise inconclusive. 
At this time there seems to exist no definitive experimental test of the existence of such a residual rotational 
energy in a distinguishable form. 
 Another aspect of a consideration of rotational and vibrational terms is their combined treatment 
according to fractional calculus (Hermann, 2013, 2014) to overcome the traditional distinction between 
vibrational and rotational degrees of freedom.  For this purpose the vibrational, (v + ½), and rotational, (J + 
½)2, functionals must have the forms as explicitly specified. Fractional parameter α as (n + ½)α with n = v or 
J allows for a smooth transition between the two limiting cases, α = 1 and α = 2. An application, to only 
third order in anharmonic corrections and centrifugal stretching, of this approach to the absorption spectrum 
of gaseous HCl in the mid-infrared region yielded a calculated spectrum (Hermann, 2013) of which both the 
wavenumbers and the intensities of the lines approximate the experimental spectrum moderately accurately. 
 In summary, the bulk of the available theoretical evidence indicates that, as a functional in the 
formula for rotational term values, (J + ½)2 is preferable to J(J + 1); there appears to be no experimental 
evidence to the contrary. Mulliken (1930a,b) recognised correctly that (J + ½)2 should be used rather than J 
(J + 1) in the formula for rotational term values, but he erred in proceeding to endorse the latter for use in the 
analysis of molecular spectra involving rotational contributions to the transitions. Future spectral analyses 
should hence be undertaken with the correct functional, (J + ½)2, but any use of either functional in an 
application must be stated explicitly. 
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APPENDIX 
 
 We present here several formulae, not published elsewhere, that are directly useful in an analysis of 
pure-rotational and vibration-rotational spectra, in both absorption or emission and Raman scattering, in 
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terms of (J + ½) to various powers for the rotational terms.  Explicitly, for the pure rotational spectrum we 
express these terms, implicitly in wavenumber unit, as 
 

F(J)  =  B (J + ½)2 − D (J + ½)4 + H (J + ½)6 + L (J + ½)8 
 
involving conventional parameters B, D, H and L, and retaining contributions up to J8. Accordingly, for lines 
in a pure-rotational spectrum in absorption or emission within one vibrational state with selection rule ΔJ = 
+1, implying branch R, the wavenumbers of the lines conform to this formula. 

 

 

 
For purposes of linear regression to evaluate spectral coefficients B, D,..., each with its associated 

standard deviation, this form is practical. 
 

 
 

For lines in the pure-rotational spectrum within one vibratioinal state recorded as Raman scattering 
according to selection rule ΔJ = +2, implying branch S, the wavenumbers of the lines conform to this 
formula. 

 
 

For the same purpose of separate evaluation of each spectral coefficient, the following formula is 
applicable. 

 
 
 For vibration-rotational spectra that involve transitions between rotational terms belonging to two 
vibrational states, state 2 having a vibrational term greater than state 1 by ν0, the formula for the rotational 
terms within each state is the same as above, but we must distinguish the spectral coefficients of each state.  
For electronic state of class 1Σ there occur two branches of a band that comprises the absorption or emission 
spectrum, branch R with ΔJ = +1,  
 

R(J)  =  ν0 + F(J + 1, B2, D2, H2, L2)  −  F(J, B1, D1, H1, L1) 
 
and branch P with ΔJ = −1,  
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P(J)  =  ν0 + F(J − 1, B2, D2, H2, L2)  −  F(J, B1, D1, H1, L1)  

 
An elegant method of evaluating separately the spectral coefficients of each vibrational state 

involves the use of combination differences.  This combination, 
 

 
yields the parameters of state 2, whereas this combination, 
 

 
yields the parameters of state 1.  For the purpose of linear regression that yields directly the values and 
standard deviations of the separate spectral parameters, these two formulae are applicable.

 

 

 
 

The following combination sum enables the evaluation of vibrational term difference ν0 
corresponding to the band origin, after the values of the pertinent rotational parameters have been evaluated 
with the above formulae. 
 

 
 

 In a vibration-rotational band recorded as Raman scattering, there occur two branches S, for ΔJ = +2, 
and O, ΔJ = −2, on one or other side of central branch Q, for ΔJ = 0. 
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S(J)  =  ν0 + F(J + 2, B2, D2, H2, L2)  −  F(J, B1, D1, H1, L1) 

 
O(J)  =  ν0 + F(J − 2, B2, D2, H2, L2)  −  F(J, B1, D1, H1, L1) 

 
 The combination differences appropriate to the separate evaluation of the rotational parameters of 
each vibrational state conform to these formulae. 

 

 

 

 
The corresponding formulae to evaluate the rotational parameters pertaining to the separate 

vibrational states follow. 

 
 

 
 

After the evaluation of the separate rotational parameters, the combination sum to evaluate the band 
origin, ν0, has this formula. 
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 These formulae have direct practical application to evaluate the pertinent spectral parameters of a 
pure-rotational or vibration-rotational band in conformity with a rotational term value expressed in terms of 
(J + ½) to various powers. If not all contributions to the rotational terms up to (J + ½)8 are necessary, each 
formula can be truncated at an appropriate level. 
 
 


