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Abstract 
 

A partial separation of the variables is practicable for the solution of Schroedinger's temporally 
independent equation for the hydrogen atom in cartesian coordinates x,y,z, which yields moderately 
simple algebraic formulae for the amplitude functions involving quantum numbers k, l, m, the same as 
in spherical polar coordinates.  The properties of angular momentum are thus achieved with no angular 
variable. Several plots of surfaces of constant y(x,y,z) are presented to illustrate the resemblance of the 
shapes of these surfaces to the shapes of surfaces of y(r,q,f) with the corresponding quantum numbers. 
 
 

Resumen 
 
Se muestra una separación parcial de las variables para la solución de la ecuación independiente de la 
temporalidad de Schroedinger en coordenadas cartesianas x,y,z que produce una fórmula algebraica 
bastante sencilla para las funciones de amplitud que involucran los números quánticos k, l, m, así como 
en las coordenadas esféricas polares. De esta forma, las propiedades del momento angular se obtienen 
sin una variable de ángulo. Varios gráficos de las superficies de la constante y (x,y,z) se presentan para 
ilustrar la semejanza entre la forma de estas superficies y la forma de las superficies de y (r, q, f) con 
los números cuánticos correspondientes.  
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I INTRODUCTION 
 

Schroedinger (1926) initiated wave mechanics, which is now recognised to be one method 
among many that collectively constitute quantum mechanics, with a solution of his equation for the 
hydrogen atom in spherical polar coordinates.  For physicists this achievement became a third such 
method that might be applied to treat various problems more or less related to sundry experiments in 
quantum physics, but for chemists this solution provided, rightly or wrongly, a basis for a conceptual 
approach that pervades much chemical description of the structure and reactions of molecules and 
materials in terms of orbitals.  Although the latter are formally merely mathematical entities -- 
algebraic formulae, in the minds of many chemists whose understanding of the mathematical basis is 
weak, they have become imbued with properties and significance far transcending their algebraic 
reality (Ogilvie, 1990).  An orbital is logically defined as an amplitude function (Schroedinger's term) 
that results from a solution of Schroedinger's temporally independent equation for an atom with one 
electron.  That equation is solvable with a complete separation of the variables in spatial coordinates 
in four systems and momentum coordinates in at least two systems (Kalnins et alii, 1976); those 
solutions in spherical polar, paraboloidal, ellipsoidal and spheroconical spatial coordinates have been 
presented in detail, with many plots of surfaces of constant amplitude to reveal the geometric 
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properties, in preceding papers in this journal (Ogilvie, 2016 a-e).  Of the systems feasible for a 
complete solution in momentum space (Kalnins et alii, 1976), only two systems have been treated 
other than as a formal recognition of their existence; in one case the coordinates obtained from Fourier 
transformation from spherical polar spatial coordinates lacked orthogonality (Podolsky and Pauling, 
1929), which would complicate calculations based on these functions, but, when orthogonality was 
imposed (Lombardi, 1980), the resulting formulae include a Dirac delta function for one coordinate; 
the latter property is questionable for a quantity of which its square must possess a physical meaning 
(Born, 1926). In the second case, as a transformation claimed from paraboloidal coordinates (Klein, 
1966), the resulting toroidal coordinates, equivalent to cylindrical coordinates (Kalnins et alii, 1976), 
might likewise lack that orthogonality property. 
 Distinct from a complete separation of variables for the hydrogen atom in coordinate space, a 
partial separation is practicable in cartesian coordinates -- x, y, z according to common convention; 
although the results deserve to be known for applications in both physics and chemistry, the short 
paper (Fowles, 1962) in which this worthy calculation was reported had no citation in the literature 
for more than a half century until our recent recollection of its existence (Ogilvie, 2016b).  Here we 
recall and extend the derivation of the resulting algebraic functions and present some plots of their 
surfaces of constant amplitude to demonstrate the practical utility of that derivation.  
 
II DERIVATION OF THE GENERAL AMPLITUDE FUNCTION 
 
 Fowles (1962) began his derivation with an assumption that amplitude function y(x,y,z) had 
the form of a function of four variables, x, y, z and , so f(x,y,z,r), and further that 
the part of f dependent on r is separable, so f(x,y,z,r) = F(x,y,z) R(r); this device enables a partial 
separation of the variables.  Under these conditions and after some algebraic manipulation, 
Schroedinger''s equation becomes written (with mathematical software Maple) in these coordinates 
and SI units as  

, 

 
in which the potential energy V(r) that takes into account the coulombic attraction appears in the 
ultimate term on the left side of the equality. Fowles proceeded to seek solutions such that F(x,y,z) 
satisfies the Laplace equation, ▽2Fl(x,y,z) = 0; this assumption might be justified if one consider that 
radial function R(r) takes into account the coulombic term in the customary hamiltonian operator, 
leaving the laplacian operator involving the cartesian coordinates.  Differentiation of  Fl(x,y,z) = (a x 
+ b y + c z)l provides a proof that this formula is a solution provided that a2 + b2 + c2 = 0; furthermore, 
for Fl(x,y,z) to be singly valued, l must be integer.  Under these conditions Schroedinger's equation 
reduces to this radial equation. 
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With coulombic potential energy in SI units for an atom of atomic number Z having only one 

electron, , on introducing dimensionless variable r = r/aµ and eigenvalue parameter

, with effective Bohr radius
 

=  in terms of reduced mass µ 

for the system of electronic and nuclear masses, and letting , the radial equation 
becomes transformed into  

 

 
This differential equation has well behaved solutions in which appear associated Laguerre 
polynomials ( ) with  = k + l + 1, a positive integer.  Eigenvalues Ek,l hence 
conform to the conventional formula whereby the energy of a bound state is proportional to the 
inverse square of a positive integer. 

 

The corresponding eigenfunctions are derived explicitly, as expressed directly with 
mathematical software Maple to ensure an accurate presentation, in this form that is slightly modified 
from the solution that Fowles (1962) published to take into account the SI convention.  

 

 
This general formula, which includes a normalising factor derived from only the radial part 

containing the exponential function and the associated Laguerre polynomial, contains quantum 
numbers k, l that arise from the solution for radial function R(r). A requisite of a solution of 
Schroedinger's equation for a bound system is that the amplitude function must decay to zero as r → 
∞; this condition is satisfied if the Laguerre function becomes a polynomial of finite order, which is 
fulfilled when parameters k and l take discrete values of non-negative integers. To define a third 
quantum number according to the applicable criteria (Fowles, 1962), we consider the angular 
momentum of states of the hydrogen atom.  
 
III ANGULAR MOMENTUM  AND  AMPLITUDE FUNCTION  
 

The two most important properties to characterise a state of any atom are its energy and its 
angular momentum.  For only an atom with one electron, such as hydrogen, is the energy of a bound 
state synonymous with an energy quantum number.  Having obtained the energy explicitly  defined 
in an expression above, we consider the angular momentum, a vectorial quantity M.  For a component 
of angular momentum about axis z, we have, with i =√−1 and Planck constant h, 
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with analogous formulae for Mx y and My y in which the axes are permuted cyclically.  Taking into 
account that factor R(r) commutes with the angular momentum operator, we obtain, using the 
properties of the derivatives applied in the generation of the amplitude functions above, 

( ) 

As R(r) commutes also with operator M2 = , we obtain, equating F(x,y,z) with 

Fl(x,y,z) that is a solution of the Laplace equation from above, 

 

which, on substituting the formula for Fl(x,y,z), yields the result  

 

This formula indicates that the eigenvalues of M2 are , with no preferred axis.  

For a component of M such as Mz, implementing the derivatives yields 
 

 

 
For Fl(x,y,z) to satisfy the Laplace equation according to the condition that a2 + b2 + c2 = 0 

implies that a,b,c must be defined in terms of two arbitrary complex numbers u and v, as follows: 
 

,     ,      
Fl(x,y,z) becomes  

 
 

Expressed in this manner, Fl(x,y,z) is a homogeneous polynomial of degree 2 l in u; v contains 
2 l + 1 terms, the coefficients of which are polynomials of degree l in x, y, z. 

 

 
In table 1 we present the values of Ql,m(x,y,z) for l up to 4 and all feasible values of m.  Because 

u and v are arbitrary complex numbers, each  is a solution of the Laplace equation, and, 
according to the assumptions above, is hence a suitable eigenfunction for the solution of the hydrogen 
atom in wave mechanics and cartesian coordinates.  In general, 

 

 
in which m takes values of integers from −l  to l.  In this representation in terms of Ql,m according to 

a choice of conditions above, component z of angular momentum M, i.e. Mz, has eigenvalue , 

which defines third quantum number m. The total amplitude function, incompletely normalised, in 
terms of cartesian coordinates and containing three quantum numbers k,l,m hence becomes  
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IV PLOTS OF AMPLITUDE FUNCTIONS 
 

We present plots of selected amplitude functions in cartesian coordinates to display the 
geometric properties of surfaces of constant y at a value chosen to be about 1/100 of the maximum 
value of yk,l,m for that particular function; such a criterion implies that about 0.995 of the total 
electronic charge density is found within a corresponding surface of yk,l,m

2. The scale of each axis has 
unit aµ, approximately 5.2x10-11 m.  Figure 1 shows first the surface of amplitude function y0,0,0(x,y,z), 
which has a spherical shape and diameter identical with those of the corresponding surfaces of 
functions for the ground state in all four coordinate systems in which the spatial variables are 
completely separable (Ogilvie, 2016 a-e). 

 

  
 

FIGURE 1  Surface of amplitude function  at a constant value of y taken 

to be 1/100 of the maximum amplitude.  Here, and in succeeding plots in three pseudo-dimensions, the unit of length 
along each coordinate axis is effective Bohr radius aµ. 
 
 The next surface, in figure 2, is that of amplitude function y0,1,0(x,y,z), which consists of two 
roughly hemispherical lobes with rounded edges, one with positive phase and the other with negative 
phase. Amplitude functions y0,1,1(x,y,z) and y0,1,−1(x,y,z) are complex, requiring separate plots of their 
real and imaginary parts; those surfaces of the real parts have shapes and sizes identical with those of 
the surface in figure 2 but are cylindrically symmetric about axes x and y respectively, instead of axis 
z for y0,1,0(x,y,z), whereas the respective imaginary parts are symmetric about axes y and x. 
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FIGURE 2   Surface of amplitude function  

 In figure 3 the surface of real amplitude function y0,2,0(x,y,z) consists of three lobes, one being 
a circular torus of symmetric cross section, having its centre at the origin, of negative phase that 
separates two conical spheroidal lobes of positive phase.  Of four other functions with k=0 and l=2, 
of which m = −2, −1, 1, 2, each function has both real and imaginary parts; each surface comprises 
four lobes of slightly conical spheroidal shape that lie along or between the cartesian axes and with 
the apices of their cones directed toward the origin. 
 

 

FIGURE 3  Surface of amplitude function , 

comprising a circular torus that separates two conical spheroidal lobes. 
 
 In figure 4 we show the surface of real amplitude function y0,3,0(x,y,z) that consists of four 
lobes; two of these are circular tori of opposite phases and unsymmetric cross section but surrounding 
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axis z. and the other two are conical spheroids, also of opposite phases, with the apices of their cones 
pointing toward the origin. 

 

FIGURE 4  Surface of amplitude function , 

cut open to reveal the internal structure 
 

In figure 5 the surface of amplitude function y0,4,0(x,y,z) exhibits five lobes of which three are 
circular tori about axis z; the central torus has positive phase, like the two conical spheroidal lobes 
separated by the three tori, and the other two tori have negative phase. 

  
FIGURE 5   Surface of amplitude function

 

, cut open to reveal the internal 

structure. 
 

In figure 6 the surface of amplitude function y1,0,0(x,y,z) exhibits an inner sphere of positive 
phase surrounded by a spherical shell of negative phase. Further surfaces with radial quantum number 
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k > 0 and l or m > 0 likewise possess inner lobes, but the shape of the outermost surface resembles 
that of the respective surface for y0,l,m(x,y,z). 

 
V DISCUSSION   
 
The derivation above, adapted and extended from work of Fowles (1962), and the plots in figures 1 - 
6 of the amplitude functions explicitly specified in algebraic form demonstrate that a partial 
separation of variables as cartesian coordinates is effective to yield algebraic formulae that possess 
the properties appropriate to a solution of Schroedinger's equation for the hydrogen atom, beyond the 
four coordinate systems in which a complete separation of variables is practicable.  The plots of 
surfaces of the selected amplitude functions have exactly the same size and shape as their counterparts 
in spherical polar coordinates (Ogilvie, 2016b).  This property is predictable because the sets of 
quantum numbers -- k,l,m -- are the same in both cases and because one can simply transform the 
coordinates directly between spherical polar and cartesian; for instance, r cos(q) that occurs as the 
angular part of y0,1,0(r,q,f) is equivalent to z that occurs in y0,1,0(x,y,z).  One might hence regard these 
amplitude functions in cartesian coordinates as variants of the corresponding amplitude functions in 
spherical polar coordinates. As one is more familiar with the cartesian system of coordinates than the 
spherical polar system, the formulae involving polynomials in cartesian components, as listed in table 
1, are likely more meaningful than the products of trigonometric functions with arguments q and f 
that occur in spherical polar coordinates. Although there be no factor eimf in the amplitude functions 
in cartesian coordinates that bestows a complex character on amplitude functions in spherical polar, 
paraboloidal and ellipsoidal coordinates, the imposition that Fl(x,y,z) must satisfy Laplace's equation 
with a condition a2 + b2 + c2 = 0 requires generally complex quantities for Qk,l(x,y,z); most amplitude 
functions yk,l,m(x,y,z) have hence both real and imaginary parts. 

 

FIGURE 6   Surface of amplitude function , cut open to reveal the 

internal structure 
 
 Whereas partial separations of coordinates are practicable for the solution of Schroedinger's 
equation in other systems, as one can readily test with advanced mathematical software (such as 
Maple) typically to yield one coordinate equivalent to f in spherical polar coordinates, such an 
implementation leaves an intractable mixture of the other two coordinates; the procedure is hence 
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unproductive of practical amplitude functions. A claimed complete separation to solve "the Coulomb 
problem in cylindrical polar coordinates" is erroneous (Mueller-Kirsten, 2012).  In combination with 
the preceding collection of amplitude functions in four systems of coordinates with complete 
separation of variables (Ogilvie, 2016a-e), the present collection of amplitude functions for the 
hydrogen atom hence represents the full current knowledge about these algebraic solutions in 
coordinate space for the hydrogen atom in non-relativistic wave mechanics. 
 

TABLE 1  Values of Ql,m(x,y,z) 
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