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Abstract

Theorems stating that something is impossible are notoriously difficult to under-
stand for many students and amateur mathematicians. In this talk I shall discuss
how the role of such impossibility statements has changed during the history of
mathematics. I shall argue that impossibility statements have changed status from
a kind of meta-statement to true mathematical theorems. I shall also argue that
this story is worth telling in the classroom because it will clarify the nature of
impossibility theorems and thus of mathematics. In particular it will show to the
students how mathematics is able to investigate the limits of its own activity with
its own methods.
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1 Impossibility, the noble quest

To accomplish the impossible is the most ambitious quest one can have in life. This is
the central message one will get if one searches the web for quotations on “impossibility.
Here is a brief list of such quotes accessible from (thinkexist.com, 2011):

“The impossible - what nobody can do until somebody does”

“Start by doing what´s necessary; then do what´s possible; and suddenly you are
doing the impossible.” (St Francis of Assisi)

“The impossible is often the untried.”

“ Impossible is not a scientific term.”

“The Wright brothers flew right through the smoke screen of impossibility.”

"Every noble work is at first impossible" (Thomas Carlyle)

“Impossible only means that you havent found the solution yet.”

“I love those who yearn for the impossible.” (Goethe)

1 Este trabajo corresponde a una conferencia paralela dictada en la XIII CIAEM, celebrada en Recife,
Brasil el año 2011.
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“Its kind of fun to do the impossible.” (Walt Disney)

“Nothing is impossible. . . It is often merely for an excuse that we say that things are
impossible” (Duc de La Rochefoucauld)

“Impossible is a word to be found only in the dictionary of fools.” (Napoléon)

I shall not vouch for the accuracy of the quotes. I only cite them to give an impression
of a consistent popular view of the impossible. With such a view in mind it is quite
natural that many amateur mathematicians have tried to square the circle or trisect the
angle. And it is also clear that the attitude of professional mathematicians must seem
extraordinarily arrogant to them. Not only do the professional mathematician claim
that the problems are impossible, they also claim that they know in advance that the
solution presented by the amateur must be wrong and therefore hardly bother to look
at it!

What the amateur usually has not understood is

1. that mathematical impossibility theorems do not claim that a problem is impossible to
solve in general, but only that it is impossible to solve with a particular type of methods
and within a particular well defined framework. In fact mathematicians often have the
audacity to claim that clearly unsolvable problems such as the equation x2 + 1 = 0
have solutions after all if the domain of enquiry is extended far enough. In this way
they behave just like the people quoted above.

2. that mathematicians do not just claim that because they have not been able to find
a solution it must be impossible but that they have a proof of the impossibility.

These misunderstandings are not new. Already in 1778 Condorcet wrote that “a mass
of people, many more than one thinks, renounce their useful job in order to abandon
themselves to the research of these problems” (Condorcet 1778). The problems he
referred to was the quadrature of the circle, the duplication of the cube and the trisection
of the angle, and the occasion was the decision made in 1775 by the Académie des
Sciences to stop reviewing solutions of these problems.

The hope was that this step combined with the enlightening work of Montucla (1754)
would dissuade amateur mathematicians from wasting their time solving the problems.
It is well known that the effort did not work. Circle squarers continued their futile
work for centuries. Still, at least in Denmark the last decades have experienced a
great decline in the number of circle squarers who address their purported solutions
to the universities. Is this a delayed result of the enlightenment that Condorcet and
his fellow philosophers opted for? I am afraid not. Without having made a statistical
investigation I am convinced that the diminished interest in the classical problems is
not due to more knowledge about the problems. On the contrary, it seems rather to be
the result of ignorance. Fewer children learn a sufficient amount of geometry in school
to ever encounter the problems, and thus they are not tempted to try to solve them.

So in this case ignorance has had a more positive influence on the problem than
enlightenment. Still, I think that there are good reasons to prefer enlightenment even
if it might create more circle squarers. In fact, I think that impossibility theorems have
a place in the classroom at least at high school level. To be sure such theorems do
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not teach the students to solve more mathematical problems, but they will teach them
that one cannot solve all problems with a given method. This is in itself an important
lesson that can be of help to those who learn mathematics in order to use it in their
later profession.

Impossibility theorems have even more important lessons to teach those students who
want or need to learn something about the nature of mathematics. In particular, it
is important for the students to understand how mathematics has been able to deal
with its own limits using its own methods. This is rather unique to mathematics. In
most other areas of life a solution of a problem and a statement of its impossibility are
two very different types of statement and they call for different methods. For example
take the problem of flight alluded to in one of the impossibility quotes above. Here a
solution was an engineering accomplishment namely the construction of an airplane.
An impossibility argument might have relied on fundamental physics or philosophy but
could of course never have been an engineering construction.

Another lesson to be learned from impossibility theorems in mathematics is the utmost
precision required to make this type of statements meaningful and true. For example it
is not enough to state that the classical problems are impossible, One must state that
the problems are only impossible if one requires that they be constructed by ruler and
compass, and one even has to make quite precise what one is allowed to do with the
ruler and the compass. One can only draw a straight line between two given points
and a circle with given center and radius. And one can consider all intersection points
arising in this way as new given points. One is not allowed to make a so-called neusis
construction although such a construction is in a sense made by a ruler.

2 Are impossibility theorems something special?

While many amateur mathematicians have tried to disprove the theorem stating the
impossibility of the quadrature of the circle there have been few who have tried to
disprove positively formulated mathematical theorems such as Pythagoras’ theorem.
This alone suggests that impossibility theorems play a special role. Is it only the
mathematician’s know-all attitude displayed in impossibility theorems that provoke
the amateur or are there other differences between impossibility theorems and other
theorems?

If we consider mathematics as a collection of theorems it is hardly possible to distin-
guish impossibility statements from other mathematical statements. An impossibility
statement usually says that something does not exist. Such a statement has the form:

¬∃x : p(x)

According to the usual rules of logic this statement is equivalent to the universal
statement:

∀x : ¬p(x)

For example Fermat’s last theorem, which is usually stated as the impossibility of
solving the equation xn + yn = zn in natural numbers when n is larger than 2, can
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just as well be formulated as the universal statement:

∀x, y, z, n ∈ N : n > 2⇒ xn + yn 6= zn.

In this way there seem to be no logical difference between impossibility theorems and
other theorems.

But it is a fact that certain theorems are usually formulated as impossibility theorems
and are recognized as such by amateur and professional mathematicians alike. How
can that be? In order to answer that question it is important to distinguish two different
ways of looking at mathematics: It can be considered as a theorem proving enterprise
and also as a problem solving enterprise. As we have seen the distinction between
impossibility statements and universal positive statements is not clear from a theorem
proving point of view. However, if mathematics is considered as a problem solving
enterprise there is a clear distinction between finding a solution of a problem and
proving that a solution is impossible. And all famous impossibility theorems do indeed
state the impossibility of solving a problem that might at first sight seem solvable.

This distinction between solutions of problems and impossibility statements seems to
be partly responsible for the fact that many amateur mathematicians do not realize
that impossibility statements can be proved just as other mathematical theorems. And
a view of the history of impossibility theorems will reveal that in earlier periods even
first rate mathematicians have considered some types of impossibility theorems as a
kind of meta-theorems that are not amenable to proof. This aspect of the history of
impossibility theorems seem to me to be one of the major reasons why the history of
impossibility theorems can help shed light on the nature of these theorems in a class
room.

3 Impossibility statements as meta statements

The classical construction problems mentioned above were formulated quite early in
the history of Greek mathematics (Katz 2009). They were all solved by various means
but no construction with the Euclidean tools of ruler and compass were found. It has
been discussed when and how strictly the Greeks formulated a preference for ruler
and compass constructions but with the late Greek philosopher mathematician Pappus
(about 340 AD) a strictly normative requirement of simplicity of constructions was
formulated (Pappus, see in particular book III chapter VII and book VI chapter XXXVI).
According to Pappus a problem is plane if it can be solved by ruler and compass, and
it will be a serious methodological mistake to solve such a problem using other means.
According to Pappus the trisection of an angle and the duplication of a cube are solid
problems. This means they can be solved by intersection of conic sections, but they
cannot be solved with ruler and compass. He provided proofs of the positive parts of the
statements, i.e. that the problems can be constructed by intersections of conic sections,
but the impossibility of solving the problems with ruler and compass remained just a
postulate. He mentioned that previous attempts of constructing the two problems by
plane means had failed, but it is also clear that when he claimed that the problems
were not plane, he meant more than just this empirical fact. He made it clear that the
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problems were somehow in principle unsolvable by plane means and even poked fun of
an unnamed colleague who had tried to solve the problems by ruler and compass. And
yet he never even indicated that he considered this impossibility as a fact that called
for a mathematical proof.

This indicates that Pappus considered these impossibility statements as a kind of
meta-mathematical statements: a statement about the mathematical problem solving
enterprise but a statement that in itself is not a mathematical theorem. Mathematics is
still full of such statements. For example we may state about a proof that it is elegant
or about a theorem that it is important and no-one will dream of asking us to prove
our statements.

One can point to a similar situation in the history of the solvability of polynomial
equations by radicals. Here Lagrange (1770/71) made a great effort of analyzing the
method of solving equations of degree 2,3 and 4 in order to generalize the method to
obtain a solution of equations of higher degree. His analyses of the previous methods
were penetrating and yet they did not lead him to a method of solving the quintic.
He still decided to publish his results because he hoped that his successors might put
them to use in the solution of the quintic if such a solution existed (Lagrange, 1770/71,
pp. 355, 357, 403). It is interesting that he explicitly mentioned the possibility that
the quintic might be unsolvable by radicals, and equally interesting that he did not
suggest that his methods might be of help in proving this impossibility. A few years
later (1799) Ruffini attempted just that (Ruffini, 1915) but Lagrange did not bother to
respond to his attempts.

4 The lack of importance of impossibility results

This indicates that even when Lagrange was made aware of the possibility of proving
the impossibility he did not consider it particularly interesting. In fact there are other
historical instances where impossibility results have been overlooked or even explicitly
denounced as unimportant: One example is connected to Fermat’s formulation of im-
possibility theorems in number theory. Today he is most famous for his last theorem,
but he actually formulated and in one case proved other impossibility results such as
the impossibility of forming a right angled triangle with integer sides and an area that
is a square number. As pointed out by Goldstein (1995, 136) Fermat’s contemporaries
did not think highly of this type of theorem. To them mathematics was about solving
problems not about finding problems that cannot be solved. For example Wallis wrote
about Fermat: “I do not see why he mentions them [negative propositions] as things
of a surprising difficulty. It is easy to think of innumerable negative determinations of
this sort" (Wallis, 1657, quoted in Goldstein, 1995)

A similar view can be detected in Gauss’s dealing with the construction of regular
n-gons (Gauss, 1801). He proved in detail how to construct a regular n-gon by ruler
and compass if n is of the form 2kp1p2 . . . pi where k is a natural number or zero and
p1, p2, . . . , pi are different Fermat primes, i.e. primes of the form 22j + 1. He also
claimed that he could prove that the regular n-gon was impossible to construct with
ruler and compass if n is not of this form. However, he did not include his proof in the
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book. Today we consider this impossibility theorem as at least as interesting as the
positive constructive part of Gauss’ theorem, but apparently Gauss considered it less
important, or perhaps he just thought that his contemporaries would consider it less
important.

In (Lützen, 2009) I have shown that Wantzels proof from 1837 of the impossibility
of constructing the duplication of the cube and the trisection of the angle by ruler
and compass was almost overlooked for a century even though it settled these two
very famous classical problems. Again this seems to indicate that such impossibility
theorems were still considered as less important than positive theorems even as late
as the beginning of the 19th century.

5 A surge of impossibility results

However, the period around 1830 saw a surge in impossibility theorems. In addition
to Wantzel’s impossibility proof the most famous is Abel’s proof of the impossibility of
solving the quintic by radicals (Abel, 1824) and Liouville’s proofs that one cannot find
certain integrals in finite terms or integrate certain differential equations by quadrature
(i.e. in expressed in terms of indefinite integrals) (Lützen, 1990). Wantzel himself wrote
several other papers on impossibility results. For example he established that it is
impossible to avoid the use of complex numbers when one expresses the roots of a
cubic equation with three real roots in terms of radicals (Wantzel, 1843). Moreover
Fermat’s last theorem was proved around 1830 for n = 5 and 7 by Legendre, Dirichlet
and Lamé (Katz, 2009).

However as I pointed out above Wantzel’s proofs were not really appreciated at the
time and the same holds true for Liouville’s results that were only taken up again more
than half a century later.

6 The difficulty of the parallel postulate

The story of the emergence of non-Euclidean geometry is also the story of impossibility,
namely the impossibility of proving the parallel postulate from the other axioms of
geometry. However, the story shows how difficult it was to realize that such an
impossibility could be proved. In fact the proof presented itself in a somewhat backward
way and at first it was not generally accepted as a proof at all. In fact when Gauss,
Lobachevsky and Bolyai developed their non-Euclidean geometry they had no proof
that the parallel postulate was not a consequence of the other postulates and therefore
did not really know that their new geometry was consistent at all.

The road to the proof of the independence of the parallel postulate was opened in
1868 by Beltrami who used Gauss’ theory of surfaces to show that a surface of con-
stant negative curvature did indeed possess a non-Euclidean geometry if geodesics are
playing the role of straight lines. He realized such a surface as the an open circular
disc equipped with a suitable metric. The surface of constant negative curvature is now
considered a model of non-Euclidean geometry and it is used to argue for the relative



i
i

i
i

i
i

i
i

Mathematical Impossibility in History and in the Classroom 171

consistency of non-Euclidean geometry. The argument goes as follows: an inconsis-
tency in non-Euclidean geometry would turn up in the model as an inconsistency in
Euclidean geometry in which the surface of constant negative curvature lives. Thus if
Euclidean geometry is consistent non-Euclidean geometry is consistent as well. This
way of putting the consistency argument was explicitly put forward by Poincaré in
1902 in La Science et l’Hypothèse. But when Beltrami first presented what he called
a real substrate for non-Euclidean geometry it was not immediately realized that it
implied the impossibility of proving the parallel postulate. As documented by Voelke
(2005) Beltrami himself took some time to draw this conclusion and some of his less
prominent contemporaries interpreted it very differently. They took Beltrami’s model
as evidence that Euclidean geometry was indeed the only correct geometry. To them
Beltrami’s model showed that Gauss, Lobachevsky and Bolyai had not found a new
geometry. They had only developed a geometry of geodesics on a surface in Euclidean
space.

This story show how difficult it was for Beltrami and his contemporaries to appreciate
the model as a method for proving independence of an axiom. I cannot tell if this is
a suitable story to tell to high school students, but it is useful knowledge to their
teachers, because it exemplifies the problems the students may have in understanding
the meaning of impossibility proofs.

7 Impossibility theorems become main stream

Today impossibility theorems have obtained a central place in mathematics. Indeed
many of the most celebrated mathematical results are impossibility theorems. This
happened around 1900. Already Abel (1839) had emphasized that his predecessors had
made a mistake by posing the problem: Find the solution by radicals of the quintic.
Instead Abel suggested that the right question to pose is: Is the quintic solvable by
radicals? Only if this question could be answered in the positive could one then go on
to ask the question of finding the solution. By changing the problem in this way Abel
claimed that all mathematical problems would have answers (Abel, 1839).

Three quarters of a century later Hilbert in his famous lecture on mathematical problems
(Hilbert 1900) rephrased this idea. According to Hilbert one must count an impossibility
proof as a kind of solution to a problem. In this way all mathematical problems could
be solved either by a proof of impossibility or by exhibiting a solution. In mathematics
there is no Ignorabimus, as Hilbert famously claimed. He remarked that this decidability
postulate was not proved, but he based his claim on general philosophical grounds.
In this way impossibility results obtained their full citizenship in mathematics. By the
irony of fate the next major impossibility theorem showed that Hilbert was mistaken.
Theorems by Turing and Gödel showed that in a sufficiently rich mathematical system
there are in fact problems that cannot be solved or proven to be impossible.
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8 Different kinds of impossibility results

We have seen that some impossibility results have been considered as meta-statements
about mathematics rather than as true mathematical statements. At first this may sound
strange. After all the first impossibility theorems are ancient. Probably the first proof of
impossibility is the famous proof of the incommensurability of the side and the diagonal
in a square. It shows that it is impossible to find a line segment that measures both
the side and the diagonal a whole number of times.

With that in mind one might suppose that it would be rather obvious to later Greek
mathematicians that one could prove other impossibility statements for example the
impossibility of constructing the classical problems using only ruler and compass. And
later in the 19th century after one had proven these impossibilities and the impossibility
of solving the quintic by radicals it may seem strange that it seemed so difficult to
accept a proof of impossibility of proving the parallel postulate.

In order to understand these difficulties I think one must distinguish different kinds of
impossibility statements. The distinction I shall introduce goes according to the thing
that is claimed to be impossible or non-existent. In the simplest case, for example
in the case of the incommensurability or Fermat’s last theorem it is an object of the
theory that does not exist (such as a common unit of the side and the diagonal of a
square). On the next level it is a construction or an algorithm in the theory that does
not exist (for example a construction by ruler and compass or an algorithm using only
radicals and rational operations). A third level deals with the non-existence of a proof
in a theory (for example of the parallel postulate) and the fourth level deals with the
impossibility of a proof about a theory (for example that every problem has a solution
in Hilbert’s sense).

Historically there is evidence that these levels are increasingly difficult to accept as
treatable by mathematical means. We have seen that at a given time impossibility
theorems of a particular level could be considered as amenable to mathematical proof
whereas impossibility statements of higher levels were considered as meta-statements.
I think that this observation may help teachers to understand the difficulties of their
students in coming to terms with the nature of impossibility statements.

9 Impossibility in the classroom

There are good reasons to teach the students at least in high school about the limits
of mathematics. There are different kinds of limits: one kind has to do with the limits
of a mathematical model of a phenomenon in nature or society. This type of limits
is not treatable with purely mathematical methods and I shall not discuss them any
further here. The other type of limits is the kind I have discussed in this paper, namely
the inability of solving a mathematical problem with a given mathematical method and
within a given mathematical system. As mentioned above it is desirable to teach the
students that there are such limits and to explain that they can be investigated with
mathematical methods. However, many of the most striking impossibility theorems
dealing with these limits are mathematically too difficult to prove in a high school
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class. Fermat’s last theorem, Gödel’s theorems and even the quadrature of the circle
are certainly beyond this level. The impossibility of proving the parallel postulate is
perhaps within reach and so is the impossibility of the duplication of the cube and the
trisection of the angle. Many years ago I wrote a book for the Danish high school in
which I went through the history of the classical problems. In this book I also included
a rather elementary proof that the duplication of the cube and the trisection of the
angle are impossible by ruler and compass (Lützen, 1985). Some teachers worked
through the proof with their high school classes and reported that it was difficult but
very rewarding at least for the good students.

But if such a proof is too hard to present to the students one can also convey the
message by telling the history of one or more of the famous impossibility theorems
without going into detail with the proofs and give a baby example of an impossibility
theorem. The following example has successfully been used by my colleague Mogens
Esrom Larsen when he was faced with circle squarers:

The problem is to find a natural number whose square has a remainder 3 when divided
by 4. Here the students may begin to check the squares of the natural numbers
beginning with 1 in order to find their remainders modulo 4. They will probably soon
discover that the remainders are apparently never 3 but seem to be 0 and 1. They may
also observe that the squares of the even numbers have remainder 0 and the squares of
the odd numbers have remainder 1. The question then arises if this is evidence enough.
Some students may at this point get the idea of trying to prove that any even number
has a remainder 0 when divided by 4 and every odd number has a remainder 1 when
divided by 4. The proofs are easy:

(2n)2 = 4n2 and so (2n)2 ∼= 0 mod 4
(2n + 1)2 = 4n2 + 4n + 1 and so (2n + 1)2 ∼= 1 mod 4

Thus we have proved that the problem is impossible.

Although this impossibility theorem will hardly in itself seem exciting to the students
it may very well convince them that other problems like the classical problems can
be given similar but more complicated impossibility proofs. In this way a teacher
has succeeded to convince the students that impossibility can indeed be proved in
mathematics. This may convince them that it is no longer a noble quest of intelligent
people to try to solve the impossible in these cases but rather a futile quest of fools.
And it will have shown the students how mathematics can in some sense deal with its
own limits using its own methods.
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