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Normalization by second order 
graphs: A visual alternative to 
simplify systems
Normalización mediante grafos de Segundo orden: una alternati-
va visual para simplificar sistemas

Edward Muñoz Garro1     

This issue stems from the need for tools to analyze and make decisions around complex 
systems, where they apply the rules for linearly dependent sets, with the purpose of providing a 
visual tool, which serves to support complexity reduction processes. Two great precedents are 
Armstrong’s Axioms, which has been applied from its publication to the present for database 
normalization, the other is set theory, a fundamental pillar of the Structured Query Language; 
based on them, together with the second-order logic, which adds qualifiers for subsets or 
properties, this work has been prepared, with an explanatory metrology with a qualitative 
approach, in an axiomatic system. As a result, a support tool has been provided to analyze 
complex systems naturally, by breaking cycles and detecting patterns, without interfering with 
existing models; however, for large systems it can be difficult to address it in its entirety, so it 
is recommended to divide by subsystems. With this work a technique has been accomplished, 
repeatable by anyone, but with a strong theoretical foundation. This work has great utility for the 
normalization of relational databases and an enormous potential for application in the design 
of systems beyond computational systems, it is also useful for understanding dependencies by 
their axiomatic nature.

Keywords: Armstrong’s Axioms; normalization of relational databases; complexity 
reduction; break cycles and detect patterns.

Este tema nace de la necesidad de herramientas para analizar y tomar decisiones en torno a 
sistemas complejos, donde apliquen las reglas para conjuntos linealmente dependientes, con 
el fin de proporcionar una herramienta visual, que sirva de apoyo a procesos de reducción de la 
complejidad. Dos grandes precedentes son los Axiomas de W. Armstrong, el cual se ha aplicado 
desde su publicación hasta la actualidad para la normalización de bases de datos, el otro es 
la teoría de conjuntos, pilar fundamental del Lenguaje de Consultas Estructurado; en base a 
ellos, junto con la lógica de segundo orden, la cual añade cualificadores para subconjuntos 
o propiedades se ha elaborado este trabajo, con una metrología explicativa con enfoque 
cualitativo, en un sistema axiomático. Como resultado se ha proporciona una herramienta de 
soporte para analizar sistemas complejos de forma natural, rompiendo ciclos y detectando 
patrones, sin interferir con los modelos existentes; sin embargo, para sistemas de gran tamaño 
puede ser difícil abordarlo en su totalidad, por lo que se recomienda dividir por subsistemas. 

1. Universidad de Costa Rica, COSTA RICA. Correo: edward.munoz@ucr.ac.cr ORCID: https://orcid.org/0000-
0002-8016-3787
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Con este trabajo se ha consumado una técnica, repetible por cualquiera, pero con fuerte 
fundamento teórico. Este trabajo tiene gran utilidad para la normalización de bases de datos 
relacionales y un enorme potencial de aplicación en el diseño de sistemas más allá de los 
sistemas computacionales, también resulta útil para la comprensión de dependencias por su 
naturaleza axiomática.

Palabras clave: axiomas de Armstrong; normalización de base de datos 
relacionales, reducción de la complejidad; romper ciclos y romper patrones. 

Every day, countless systems of all kinds interact with each other in an 
ecosystem that is invisible to the inexperienced eye, these systems generate 
large amounts of information that other systems take advantage of, these 
can be both natural and artificial. In many cases, the data does not appear 
to be directly related, however, all of this data is grouped into groups of 
information that exceed the logic of natural deduction, since they can be in 
different groups and states at the same time.

Human-made systems are not always in the appropriate form, so when a 
system needs to be migrated or upgraded, a lot of time can be wasted on 
its understanding, which leads to great losses of time and money. Viewing 
systems as graphs can reduce understanding time and facilitate optimization.
 
The main objective of this article is to illustrate how second order systems 
can be converted into graphics, through a representative technique, for 
their understanding and subsequent normalization, while having secondary 
objectives such as providing a support tool for analyze complex systems 
of diverse nature and show the relationship between Armstrong’s axioms, 
graph theory and second-order logic.

1.1 Background

Two great precedents of this work are W. Armstrong axioms, which has been 
applied since its publication until today for the normalization of relational 
databases, through the inference of functional dependencies, the other is 
set theory, a fundamental pillar of the Structured Query Language (SQL), for 
daily use by countless computer systems worldwide, which was designed to 
manage and retrieve information.

Graphs have a lot of applications in information systems, in fact, there are 
very interesting works on graph theory such as Kumar, Raj, & Dharanipragada 
(2017), where heterogeneous graphs are analyzed to calculate using user-
defined aggregate functions; or in the work of Ren, Schneider, Ovsjanikov, & 
Wonka (2017), that make groupings through graphs to design joint graphs to 
visualize segmented mesh collections; or Shi et al. (2017) where to combine 
contextual social graphs.

At the database level there are a couple of jobs where they normalize 
databases, one is Frisendal, T. (2020) where normalize database schemas 
using graphs, in a very simple way, without the need to add additional 
elements to the language, however it is different since It represents a 

1. INTRODUCTION
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different mechanism of using graphs to normalize a database, it does not 
establish mechanisms to break loops within graphs, presenting limitations 
regarding reciprocity, on the other hand, the way to use edges is node to 
node (1: 1), while the one shown here allows to group and separate the nodes 
as convenient with the creation of compound nodes, second is the work of 
Attallah, B. (2017) where It uses interactive visualization tools to normalize 
databases, although it is effective for human understanding and analysis, it 
presents multiple differences with respect to the current work, since it has an 
approach to solve while playing instead of working with graphs.

However, the way of using the graphs in this article has not been used before, 
basically due to the high complexity of the initial graph and the way to seek 
the simplification of problems through sometimes complex abstractions, not 
complex from normalization, but from the visualization.

1.2	 Justification

This method aims to provide an alternative way to solve the problems 
resulting from complexity, it does not attempt in any way to replace existing 
models, but rather to be a support tool. Being a visual method, it can be 
easier to understand and solve, supporting both professionals and students, 
since more algebraic methods are currently taught and used, this method 
attempts to offer a more natural technique.

At an academic level, the article opens a debate on the best way to teach 
and present the topic of systems normalization in general (including 
databases). It is also proposed that these methods could be automated, 
since the proposed compound graph structures can be easily modeled as 
data structures in algorithms in programming languages (as with the object-
oriented programming paradigm) and the different types of dependencies 
to delete could be detected as patterns or cycles.

1.3 Context

The current work emerged as an idea in a database course at the University of 
Costa Rica in 2015, after seeing the professor normalize a relational database, 
the idea was “this procedure is slow and complicated, it can be simplified by 
drawing “After weeks of analysis the foundations of the current work were 
created, however, other teachers could not understand it, despite being a 
functional work, on the other hand, it did not have sufficient mathematical 
foundation to formalize. In 2019, as Engineer and with more mathematical 
knowledge, he continues the development of this work. This work is born 
from a humble family and at no time has financial support been received 
from any kind for the preparation of it, however the university is thanked for 
the education received. 

This work has three main references, they are the theory of graphs, 
Armstrong’s Axioms and second order logic, the latter is vital to understand 
the multilevel structure of graphs, since functional dependencies can be 
denoted as elements of Second order. 

2. THEORETICAL REFERENCE
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2.1	 Graph theory.

Graph theory is a branch of mathematics, widely used in computing, that 
studies graphs and their properties. Graphs (usually represented by the letter 
‘G’) are made up of a set of points called “nodes” or “vertices”, represented by 
the letter “V” and a set of “edges” or “arcs” represented by the letter ‘E’, where 
each edge is in charge of joining two or more vertices, therefore a graph can 
be expressed as G = (V, E), in some cases the graphs have more than one set 
of vertices.

2.2 Armstrong’s Axioms.

Armstrong’s axioms are a set of rules to infer restrictions between the 
relationships that exist in a relational database, which are called functional 
dependencies and whose set is denoted by the letter F, , so we can see the 
Axioms of Armstrong of the form (R(U),F), where U are the attributes of the 
schema and R the function that relates the attributes.

2.3	 Second order logic

Second-order logic is an expansion of first-order logic, in which variables are 
added to express the properties or functions of the attributes, which gives 
the language greater power of expression.

3.1	 Approach

The current work has a qualitative approach, since it has a problem of interest 
with respect to functional dependencies and the observation of the new 
properties that are obtained when applied them to subsystems. The scope 
is explanatory, because, it is tried to demonstrate by means of the axioms 
and the existing theories, sometimes determining the whole as an axiomatic 
system.

3.2	 Analysis units

Theoretical models of relational databases were studied, on occasions 
databases of my own design were selected, mainly to develop the logical basis, 
on other occasions they were randomly selected from free Internet exercises 
created for students, to carry out verifications of results. Only relational 
databases were used, since by their nature the applied demonstrations are 
more evident, the selection criteria were randomization.

3. METHODOLOGY
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3.3 Collection techniques

The technique of data collection was through experimentation and 
observation, focusing on pattern detection and cycle breaking, sometimes 
trial and error, checking each result against Armstrong’s axioms, to retest.

3.4	 Analysis Processing

Then multiple tests and checks to detect patterns and break cycles, a new 
general review of not contradicting Armstrong’s Axioms was made, the result 
graphs were grouped in a categorical system and examined by second order 
logic, the result could not contradict the logic of first or second order. Each 
result can be demonstrated, however, most of the time they are reduced to 
common sense, fulfilling one of its objectives, simplicity.

The data is the basis of the systems, a space where these are most evident are 
the databases and from the principles of their normalization and the theory 
of the graphs, focused on a system of systems, this concept of normalization 
of the Graph is born of graphs.

According to Bondy & Murty (1976), a graph can be displayed as (V(G),E(G), 
ψG) where V(G) is a non-empty set, E(G) a disjoint set, with borders and 
ψG association functions. At the database level, we can be interpreting this 
association functions as functional dependencies (DF). In this technique 
only V(G) and ψG  are of interest, simplifying (V(G),V(G), ψG) as (V(G), ψG ), 
this definition is particularly convenient, since it coincides with the form 
of Armstrong’s relational schema R(X),F  where, according to Armstrong, 
Nakamura, & Rudnicki(2002) “Let X be a set and let F be a non-empty 
dependency set of X. We see that the element of F is a dependency of X.”.

The way to operate this technique is breaking cycles (which we can see as 
redundancies) and detecting patterns to facilitate the simplification of the 
systems, these patterns are nothing more than the same dependencies, 
but on a larger scale, either because they have more nodes in a section or 
because they are displayed on groups of nodes instead of simple nodes. In 
some cases, it is necessary to normalize, but in others it is not, a normalized 
graph is easier to understand and in computational aspects it requires much 
less space for its storage, however, it complicates the query operations for 
having the more segmented information. In order to land the article, it will 
focus on the following points, mainly on how to normalize a database using 
graphs.

4. RESULTS
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4.1.	 Representation

The final result of the representation of a non-standardized system is a graph 
of graphs, but when normalizing it, it is visualized as a graph of “nodes” (not 
necessarily n0 ), to understand this better each attribute must be taken as a node 
and not as a chart, this means that a normalized table is equivalent to a simple 
graph.

The objective of normalization is to reduce relations to the maximum, having 
the same objective as a file compressor in a computer, in relation to the above 
it can be said that this is equivalent to the space occupied in the secondary 
memory.

In a database, all the attributes of a table can be seen as a node, but each one 
is different, so it is necessary to put a label, which is usually a letter, however, 
it often happens that in reality two attributes are a single element.

4.2	 Advantages of using graphs

The success of normalizing using graphs resides in being visual, here are 
some advantages of them.

•	 Quick draw.
•	 Being visual is easier to understand.
•	 By using them there is less chance of being wrong.
•	 They are easier to try.

4.3	 Types of relationships

First, it is necessary to define simple nodes as those of order n0 and compounds 
such as those of order nx, being able to see them in various ways.

The relationships between nodes can be classified into three types depending 
on their nature, which depend exclusively on the types of nodes involved. 
You can name the relationship types as point-to-point, dynamic, or interplanar.

4.3.1 Point to point

They are the typical connections that are made in each directed graph, 
basically consists of connecting two or more simple nodes, I call them that 
way by relating nodes of order 0 (n0). These are equivalent to one-to-one 
relationships of the databases. These point-to-point relationships and the 
output dynamics are those that are attempted at the time of normalization 
because they represent the lowest levels of complexity. They are of the form 
ψG = {A →B}
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4.3.2 Dynamics

If there are relations of a compound node with a simple one, it can be said that 
they are dynamic relationships, they are more common than they seem and in 
some cases of maximum normalization they remain in the solution. They are 
equivalent to one-to-many relationships and their detrimental complexity is 
slightly greater than point-to-point, but much less than interplanar.

4.3.3 Interplanar

They are the product of interactions between subsystems, it occurs when there 
are two compounds and their internal nodes (individual or compound) are 
related. It can be called a pure interplanar relationship when the relationship 
is mediated by nodes of order 0, an exponential interplanar is similar to the 
previous one, but more internal (subsystems within the subsystem), finally, 
the dynamic interplanar is the one that relates a simple node and compound 
node.

If it is seen from a logical second order approach, we can define these 
relationships as those existing between the attributes of different objects, 
these relationships are semantically accepted, infrequent in natural language, 
but they appear frequently in systems, so we must be kept it in mind. Each 
relationship between planes is equivalent to a many-to-many relationship 
and represent a great unnecessary complexity in the system, so it should be 
avoided at all costs. Figure 1 illustrates the above.

FIGURE 1
INTERPLANAR (A) PURE; (B) EXPONENTIATED AT 2; (C) DYNAMIC.

Source: Own elaboration, 2020

4.4 Harmful dependencies

There are several types of relationships due to their unnecessary complexity, 
they contribute a lot of noise and inefficiency to the systems, very often 
they are the product of interactions between compound nodes (nodes that 
contain others inside) and simple nodes (points), although they can also 
happen between a single set of simple nodes.
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4.4.1	Reciprocal dependencies

These dependencies arise from relations between simple and compound 
nodes, are simple to understand, as its name implies, is a type of relationship 
that returns to its origin, but in a compound way. They are functional when 
the origin goes from point to point and returns dynamically. A reciprocal 
relationship is illustrated in Figure 2.

FIGURE 2 
(A) RECIPROCAL DEPENDENCE; (B) NORMAL DEPENDENCE. (C) NORMAL 

GRAPH.

Source: Own elaboration, 2020

In this case the simple nodes contained in the compound are not directly 
related to each other, but it is known that {α→β, β→αλ}, as every node 
contains itself the dependence remains {α↔β, β→λ}. In essence it may seem 
easy step but tends to be confused with irreducible relationships as in Figure 
2.C. If this is decomposed, we obtain {α→β, β→α, β→λ}, then with the union 
axiom the result is {α↔β, β → λ}.

In this case (αλ → β, β → α}) cannot be further reduced because there is no 
certainty of who defines {β} and there are no direct relations between {α, 
λ}, therefore it is said that is already normalized to the maximum possible. 
An easy way to distinguish reciprocal dependencies from non-reciprocal 
dependencies is by looking at their origin and destination, reciprocals start 
from a simple node and end up in a complex, the normal ones have the 
opposite direction (explained later in this article).

4.4.2	Association or associative dependencies

It is possible to affirm that the reciprocal relations of association in databases 
are associative in terms of subgroup relations and commutative in terms of 
the ends of the same relationship, the union axiom of Armstrong is equivalent 
to an relation association since {X → Y, XY → Z} = {X → YZ}, by what is said 
that what can be associated is only the nodes that travel in equal directions 
(same origin or same destination), never different because it causes loss of 
information. The commutation is simpler still, it is based on the principle of 
reflexivity that indicates that {X ← Y} ↔ {Y → X} and that {X → YZ} = {X 
→ ZY}. This normalization can be tested using Armstrong’s transitivity and 
union axioms.
With this being clear, it should be emphasized that the unnecessary 
complexity of a compound node will always be greater than that of a single 
node, hence the need to eliminate these relationships as much as possible. 
The Figure 3 illustrates what has been said.
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FIGURE 3 
(A) ASSOCIATIVE DEPENDENCE; (B) NORMAL DEPENDENCY; (C) NORMAL 

DEPENDENCE.

Source: Own elaboration, 2020

Given a relation defined as ψG  := {X→Y, XY→Z}, it is determined that S is a 
associative relation, so a term must be eliminated from the relation {XY → Z} 
and no There is certainty of who directly defines {Z}, it must be eliminated to the 
smaller term ({Y}), since if it is related to {Z}, then by axiom of transitivity, so will 
{X }, But if {X} defines {A} there is no evidence that {Y} also does, so the relationship 
is defined by ψG:={X→Y, X→Z}. From Armstrong’s point of view {X → Y, XY → 
Z} can be decomposed into {X → Y, Y → Z, X → Z}, if we eliminate {X → Z} no 
information is lost because by transitivity this relationship is deductible.

An easy way to conclude this by means of graphs, instead of with algebra, is 
to fix the relations of a compound node with a simple one, if in the compound 
all of its nodes are related to each other (it does not include the nodes of 
possible nodes Compounds within the compound), the nodes that can be 
candidate keys within the local system (within that composite node), will 
be those that relate to the simple node, therefore the composite node will 
become smaller. This is exemplified in Figure 4.

FIGURE 4
 (A) ASSOCIATIVE DEPENDENCE; (B) NORMAL DEPENDENCE.

Source: Own elaboration, 2020

The largest will always be the one that is related to the outside, to determine 
the largest node (s) you only have to follow the arrows in the opposite 
direction until you cannot continue without leaving the local system.

4.4.3 Redundancies

Many times, a set C of relationships tend to fall into redundancy, it could be 
said that in humans it functions as a mechanism that ensures that a message 
is transmitted, but in the machines in most cases, especially in databases, Is 
only an expense of resources.
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There are two basic types, depending on the complexity of the interaction 
of all their relationships, since the major determinant of the nature of 
redundancies are the relationships and as has been said before these are 
translated in size and complexity. Redundancies are classified as Coupled and 
Cyclical.

4.4.3.1 Coupling

This type of redundancy has the same impact as that of cyclical, although 
visually they are very different, it is possible to move from one to the other 
through the axiom of additivity, however, the priority at this time is to know 
how to simplify them, for this it is enough with forming a linear relationship 
between the simple node and the root of the composite node. Figure 5.a 
shows a redundant dependency and 5.b shows normalization. In this case, if 
we decompose the expression we obtain {C→A,C→B,A→B}, isolating the 
subset {C→A,A→B} we can deduce by transitivity {C→B}, so that we can 
discard the latter dependency.

FIGURE 5
 (A) REDUNDANT COUPLING; (B) NORMAL GRAPH; (C) NORMAL GRAPH.

Source: Own elaboration, 2020

These relationships are very similar to association redundancies at the visual 
level, but their main difference is that these are not distributive, since their 
result is aligned, it can form a straight line. They differ visually from the 
association redundancies by the direction of their outermost point-to-point 
relationship.

4.4.3.2 Cyclical

They are called so because the arrows form a circle, giving the intuition 
that the system rotates, although these cases do not cause drastic effects, 
it is important to eliminate them to have a complete optimization. These 
problems of redundancy can be determined by observing a graph, if a cycle 
is formed, there is almost certainly one of these cases. Let ψG = {X→Z, Z→B, 
B→C, C→Y, X→Y}, it follows that {X → Y} by transitivity, so it is not necessary 
to put that relation (see Figure 6).
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FIGURE 6
 (A) CYCLICAL REDUNDANCY; (B) NORMAL GRAPH; (C) NORMAL GRAPH.

Source: Own elaboration, 2020

4.5	 Irreducible expressions

In some cases, if proper attention is not paid, mistakes can be made with 
irreducible expressions. This section tries to clarify these circumstances.

4.5.1 Indiscernible origin

In some cases, a relationship cannot be decomposed due to its high level 
of uncertainty regarding its origin, since if we isolate the subsystem the 
properties of the left sides of the equation are the same. Take for example 
{AB → C} as a result of which the following unknowns arise: A → C? B→ 
C? Or only together do they determine the relationship? Under this scenario 
the properties (P) of A and B are the same, representing itself as		
. An example of these relationships is illustrated in Figure 1.C.

4.5.2 False cyclical

Understanding what is explained in the cyclical dependencies section, if 
there is more than one consecutive relationship in the opposite direction, 
then the set of relationships cannot be reduced, since they can be seen as 2 
different paths that converge at the same point; On the other hand, if there 
is no relationship in the opposite direction to the others, then none can be 
eliminated without losing information to the system.

The steps used by each person to solve a problem are usually different, not 
that they are wrong, but there are sequences that can help solve the same 
problem in a better way. The following is an optimal three-step algorithm to 
solve the normalization by hand.

1.	 Solve the graphs from the inside: Normalize the small systems that 
are formed inside the compound nodes.

2.	 Solve reciprocal and associative dependencies first.
3.	 If there aren’t more reciprocal or associative relationships, resolve 

redundancies.

5. RECOMMENDED ALGORITHM
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Are V(G):= {A, B, C, D, E, F, G, H} ^ ψG := {ABC→E, FD→A, AG→E, D→C, 
BC→F, A→H, F→D, H→G}; the graph formed by ψG → V(G) is denoted by 
GE and is of the form (see Figure 7a).

1.	 First associative relationship removed (see figures 7b and 7c).
2.	 Second associative relationship eliminated (see figure 7d).
3.	 Cyclical dependency eliminated, since BC→A ^ A→A □ ABC→E 

(figure 7e).
4.	 Alignment (optional) (see figure 7f ).

FIGURE 7
CASE STUDY:(A) INITIAL STATE; (B) FIRST ASSOCIATIVE RELATIONSHIP 

REMOVED; (C) FIRST ASSOCIATIVE ON DETAIL; (D) SECOND ASSOCIATIVE 
RELATIONSHIP REMOVED; (E) CYCLICAL DEPENDENCY ELIMINATED; (F) 

ALIGNMENT (OPTIONAL).

Source: Own elaboration, 2020

As you can see, it went from a highly complex system, full of reciprocal, 
associative and redundant relationships to an almost linear system, in four 
steps, without losing information related to its functional dependencies, if it 
is verified algebraically, we can see that the same result is achieved.

6. CASE STUDY
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Are V(G) := {A, B, C, D, E, F, G, H} ^ ψG:= {ABC→E, FD→A, AG→E, D→C, 
BC→F, A→H, F→D, H→G}.

•	 Order
ABC→E, FD→A, AG→E, BC→F, F→D, D→C, A→H, H→G

•	 Redundancy is eliminated by transitivity
A→H ^ H→G ^ AG→E  A→G  A→E
	 ABC→E, FD→A, A→E, BC→F, F→D, D→C, A→H, H→G
F→D ^ FD→A  F→D ^ F→A
	 ABC→E, F→A, A→E, BC→F, F→D, D→C, A→H, H→G

•	 Redundancy is eliminated by transitivity
BC→F ^ F→A ^ A→E  ABC→E
	 F→A, A→E, BC→F, F→D, D→C, A→H, H→G

Usually people are reluctant to make a chart whose nodes are other charts, it 
seems like a very complicated idea and with few practical uses, however this 
article shows the opposite. The simplicity of the way of operation makes the 
technique repeatable by anyone, since it is simply based on the breaking of 
cycles and the detection of patterns. This method of system normalization is 
humanely easier to analyze and solve problems that can be drawn on paper 
than those expressed through mathematical abstractions.

The hypothesis of this work was to demonstrate whether it is possible to 
create an axiomatic system for the simplification of complex systems through 
such a natural method as drawing the system to be analyzed in graphs, which 
respect Armstrong’s axioms, considering qualifiers for subsets or properties; 
it is evident through this method arising from database techniques, but it 
is easily applicable to other areas, while it has a high analytical power and 
various forms of use, its use depending mainly on the nature of the problem.

These methods are compatible with computational data structures, which 
could allow their coding to create systems that automate the analysis, also 
through symbol manipulation (rewriting systems). After knowing how to 
trace the problem, the only thing that is a little complicated is identifying the 
reciprocal, associative and redundant relationships, but with some exercises 
it is very easy to learn.

Personally, this method worked very well for me as a student, it is a visual 
alternative, but it has great potential. When it comes to applying across 
multiple fields, maybe it just takes a little creativity to find amazing apps.

7. CONCLUSIONES
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