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Abstract

As  complexity  increases  in  embedded  systems  design,  there  is  need  for  more  time  for  verification

purposes.  For embedded systems, the only verification that can be done is running test cases, and the

number of cases increases exponentially.  In order to shorten this verification phase of the design, we

propose a methodology to do formal verification of embedded systems.  In formal verification no test

cases are needed, but an mathematical analysis of the original model and the refined one.  We base our

tool on the Model Algebra theory of embedded systems, and apply its transformation rules to our models

to check for equivalency.  We test this transformation rules in various scenarios and prove that it is a

promising methodology to improve embedded system design.
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1  Introduction

1.1  Verification in the Traditional Design Flow

In  the  traditional  hardware  design  flow,  based  on  a  specification  (or  “golden”)  model,  a

Register-Transfer-Level model is created manually.  This phase introduces errors in the design, since it’s

done manually, so the developed RTL must be verified against the “golden” model. This step is called the

verification process. This is illustrated in Figure 1. 



Figure 1:  Verification phase in the design flow

1.1.1  Verification Challenges

The verification process faces the same challenges as the design process: due to the increasing complexity

of embedded systems, both have to explore new approaches to deliver their tasks in shorter time-to-market

time frames. Nowadays, verification time consumes more than half of the design process stage. There are

several  reasons  causing  this:  for  one  part,  higher  complexity  of  designs  mandate  longer  verification

phases. Since most of the verification is based on simulations, the low speed of co-simulations slows down

the  process.  Another  consequence  of  the  higher  complexity  is  the  number  of  test  cases  needed  to

functionally verify  the  model.  This  number  of  test  cases  increases  dramatically,  and its  creation and

selection is time consuming. 

1.1.2  Verification Methods

We can classify verification methods into two: simulation-based methods and formal methods. Simulation

based verification takes a set of inputs, feeds them into the model, and compares the set of outputs to the

expected or “correct” set of outputs, usually obtained from the golden model. The model is referred as

DUT or Device Under Test. This method is the most commonly used, as mentioned above, and it is an



extremely time-consuming process. The set of test cases may be incredibly large or almost infinite, so it is

up to the verification engineer to select and write the most “representative” cases to use. In summary,

simulation based methods are lengthy and very labor-intensive. The second verification method is formal

verification. Here, simulation is not needed. Mathematical methods are used to verify a model. There are

three approaches: equivalence checking, model checking and theorem proving. Equivalence checking tests

for correctness of synthesis and optimization of models, model checking tests a formal representation of a

model  to  see  if  a  specified  property  is  satisfied  and  finally,  theorem  proving  takes  the  model’s

mathematical  representation  of  a  specification  model  and  an  implementation  model  and  proves

equivalence by using axioms and inference rules.

1.2  System Level Design and TLMs

Due to the challenges mentioned above, the level of abstraction of the designs has moved up to the System

Level.  Raising  the  level  of  abstraction  from  RTL  to  System  Level  greatly  reduces  the  number  of

components, thus speeding the design time, simulation time and design space exploration time. Recently,

TLMs have become the optimum way of doing system level design. 

For  TLMs  to  be  synthesizable  and  verifiable,  well  defined  TLM  semantics  are  required.  Existing

formalism for RTL design such as FSDM or boolean algebra are insufficient to express TLMs. Therefore,

new  formalisms  for  TLM  based  design  are  needed.  Furthermore,  the  TLM  semantics  must  allow

simulation models written in languages like SystemC to be easily abstracted into mathematical expressions

for symbolic manipulation.

Model  Algebra  [1,2,3]  is  one  such  formalism  that  can  be  used  for  refinement  and  verification  of

Transaction Level Models. The basic concept is the separation of functional and architectural modeling.

Executable  models  are  defined  in  the  functional  space  which  platform  netlists  are  defined  in  the

architecture  space. Subsequently,  a mapping is  defined from the functional  to architecture space,  that

allows designers to evaluate useful metrics. A key assumption is a many to one mapping from the function



space to the architecture space. This constraint is necessary to produce an unambiguous design. 

Figure 2:  Architecture and functional refinement in platform based design

Figure  2(a)  shows  a  simple  mapping  of  a  sequential  composition  of  two  functional  objects  (called

behaviors) onto a processing element (PE) in the architecture. Now, assume that the designers figures that

this mapping does not produce a satisfactory execution time. So, he or she may select another PE (PE2)

that is optimized for behavior b2. The new architecture is shown in 2(b). However, in this new function

and architecture specification,  there is  no feasible mapping.  This is  because a sequential  composition

cannot be mapped to a concurrent architecture. Therefore, the function must now be refined to the one

shown in 2(c) by isolating b2 into a concurrent process. A synchronization channel is added to keep the

execution order between b1 and b2. This new refined functional model is now mappable to the refined

architecture.

As we saw in the optimization example above, functional models may need to be refined every time the

architecture netlist is modified. It is imperative that each such refinement be functionality-preserving. This

poses the TLM functional equivalence problem as illustrated in Figure 3. The problem is to verify that any

functional refinement produces a TLM that is functionally equivalent to the original TLM. In this article

we propose such a tool based on Model Algebra that verifies equivalence of the two well-formed TLMs.

By well-formed, we mean that the TLMs must follow the semantics of the objects and composition rules

of Model Algebra. Here, we present new transformation rules that will  allow more refinements in the

models.  In  addition,  we  developed  specific  application  programming  interfaces  (APIs)  that  facilitate



construction of algebraic TLMs and to perform symbolic transformations on them in conformance with

the rules of Model Algebra.

Figure 3:  TLM equivalence verification problem

2  Model Algebra

Model Algebra is a formalism for refinement and verification of TLMs. A formalism is a set of objects

and  composition  rules  that  represent  the  relationship  between  these  objects.  Model  Algebra  aims  to

express executable system models with structural details, using the same composition rules and objects.

Model Algebra’s theory was published in [1], so only a brief summary will be presented below. 

2.1  Objects

The  objects  of  Model  Algebra  consist  of:  Behaviors,  Channels,  Variables,  Behavior  interfaces,  and

Behavior ports.  Model Algebra can be represented graphically in a Behavior Control Graph (BCG),[1]

which shows the control flow of any model in MA. In BCG, there are two types of nodes: behavior nodes

and control flow nodes. 

Behaviors: They are the computational units of Model Algebra. It has ports that allows it to connect to

other behaviors using interfaces. It is drawn using a rounded rectangle, shown in Figure 4. They can be

hierarchical, meaning that they can contain other behaviors and any other MA objects inside. There is also

a special kind of behaviors called Identity behaviors, which read data from its in port and writes it out to

its out port. It essentially does not do any kind of computation inside it, it only forwards the data from one

port  to  another.  Two notable  identity  behaviors  present  in  any  hierarchical  behavior  are  the  Virtual

Starting Point (VSP) behavior and the Virtual Terminating Point (VTP) behavior. As their names specify,



computation starts at the VSP and ends at the VTP. 

Figure 4:  Behavior in Model Algebra

Channels: Are the communication elements that go from behavior to behavior. 

Variables: Allow communication by the way of storing information and being read by a behavior. In its 

graphical representation, it is draw as a rectangle. In Figure 4, the behavior Beh 1 reads from a variable v1 

and writes it to the variable v2.

2.2  Composition Rules

Composition rules are the relations between objects in Model Algebra. 

Control flow

It determines the execution order of behaviors during a simulation. All predecessing behaviors must finish

and a condition be true in order for the successor behavior to start. It is formally expressed as:

(1)

This expression states that for behavior b to execute, the condition q must be true and the behaviors  must

all execute first.  It is represented graphically as a circle with edges pointing towards it from the preceding

behaviors and has an edge toward the successor behavior. This can be seen in Figure 5.



Figure 5:  Control Node

Blocking and non-blocking operations

Behaviors may use their ports to read or write to/from a variable or another port. These read and write

operations may be either blocking or non-blocking operations. We will refer to these operations as data

dependencies. They are represented as straight arrows between ports and variables. 

2.3  Transformation Rules

A model  can  be  transformed  by  rearranging  and  replacing  objects.  Model  refinement  is  basically  a

well-defined sequence of transformations. If each of these transformations is proven correct in a formal

context, then we can perform verification by correct refinement with two given models. Starting with a

test  model  M,  a  refined  (stated  as  the  function  R())  model  M’ can  be  defined  as  the  successive

transformations on M: 

(2)

2.3.1  Hierarchical Behavior Flattening

Since  we  only  need  the  leaf  level  behaviors,  hierarchical  behaviors  can  be  “flattened”  to  reveal  its

sub-behaviors. Basically there are two types of objects that are modified in the flattening process: control

dependencies and data dependencies.  Control dependencies are modified because once the hierarchical



behavior has been flattened, the control dependency leading to it is directed instead to its VSP behavior,

and the VTP will take the place of the as the predecessor in all Control Dependencies that included the

parent behavior.  Data dependencies are modified when all ports of the parent behavior are flattened out.

The data dependency is merged with the port data dependency inside the parent. This includes the links in

all channels, extending the channel to the subbehavior.

2.3.2  Identity Elimination

Since the identity behavior does not perform any computation, it can be removed from the model after

resolving data and control dependencies. Any variables being read and written by the identity behavior are

merged, and the ports removed. The control nodes preceding the behavior are merged with the control

nodes succeeding the identity.  This is  illustrated in Figure 6. Unresolved channel  dependencies in an

identity  behavior  prevents  it  from being  eliminated;  channel  resolution  has  to  be applied first  before

removing its ports. 

Figure 6:  Identity Elimination Rule

2.3.3  Redundant Control Dependency Elimination

This  rule  removes  unneeded  control  dependencies.  Key  to  this  rule  is  the  concept  of  dominance of



behaviors: if a behavior A always executes at least once for every execution of behavior B, then we can se

that A is a dominator of B. Now, given 3 behaviors A,B and C, shown in Figure 7(a), since A dominates B,

we know that for every execution of C, the other two behaviors have already executed, hence, the control

edge from A to C is unnecessary, so it can be eliminated. This can be seen in Figure 7(b).

Figure 7:  Redundant Control Dependency Elimination Rule

2.3.4  Control Relaxation

Given a model in Figure 8(a), if there is no data dependency between behavior b1 and behavior b2, and the

control  node  between  them  has  no  other  port  or  variable  dependency,  then  b1 and  b2 can  execute

concurrently since the order of their executions does not alter any variable trace. Both behaviors would

still continue on to behavior b3, as seen in Figure 8(b).

Figure 8:  Control Relaxation Rule



3  Transaction Level Modeling

In order to accurately model TLMs, we improved some aspects of  Model Algebra and included new

transformation rules. 

3.1  Channel Resolution Rule

We  refined  channels  to  be  point  to  point  between  two  behaviors,  and  will  have  double  handshake

semantics. These behaviors must be either hierarchical behaviors or identity behaviors. The channel will

also no longer hold addresses, and any data to be transferred will be read by the identity behavior on one

side and written out by the identity behavior on the other side. It is best illustrated in Figure 9.

Figure 9:  Resolution of channels into control dependencies

3.2  Principle of Duplication

When designing embedded systems, the designers may encounter modules that slow down the execution

flow because of their slow hardware response. In Figure 10 a), let’s say that module B is the one with a big

delay. One of the common solutions would be to simply duplicate the module in question (hardware IP for

instance) and do a parallel execution to speed the execution, as shown in b). Module A will forward half of

its computation to module B’ and half to B”, assuming that both modules perform identical computation

tasks.  Finally,  our system is shown in c),  with 2 modules B’ and B” in an endless loop,  performing



calculations for A and forwarding the result to C.

Figure 10:  Principle of duplication

3.3  Behavior Type

The principle of duplication shown in the previous section is  sound if  and only if  the two behaviors

running in  parallel  are  identical.  In  order  to  include this  property into  Model  Algebra,  we  introduce

Behavior Type: each behavior will have a type, and may be shown explicitly after the behavior name,

separated by a colon. Figure 11 updates the figures in c) (from Figure 10) with the behavior type and with

the proper Model Algebra objects.

For two behaviors to be of the same type, there is one underlying condition: both behaviors have to have

the same ports and these ports have to have the same bindings to other ports or variables. If this is not met,

the two behaviors shall be considered of different type.



Figure 11:  Behavior type

3.4  Behavior Merging

This transformation merges two behaviors if the following conditions are met: 

1. Both behaviors are of the same type. This implies that both behaviors have the same bindings to the

same ports and/or variables. 

2. Their  sets  of  successor  behaviors  are  equal.  In  other  words,  the  execution  of  any  of  the  two

behaviors is followed immediately by the execution of one specific behavior. 

Figure 12:  Behavior Merging rule



3.5  Control Node Merging

This transformation rule allows to reduce the number of control nodes by merging two or more nodes if: 

1. Their sets of predecessor behaviors are equal. 

2. They have the same successor behavior. 

Figure 13:  Control Merging rule



4  Model Algebra Data Structure

In order to be able to properly manipulate and transform a model described in Model Algebra, we need a

suitable data structure to describe any posible model. We now describe the Model Algebra Data Structure

used  in  our  tool.  Our  Model  Algebra  Data  Structure  is  saved in  the  XML format  [4]  and  have  the

extension .MAG. The set of rules that all MAG files conform to is expressed in a XML Schema Definition

(XSD) [5].  MAG files are composed of the following elements: BEHAVIOR, VARIABLE, CONDITION,

CHANNEL, LINK, PORT, CD, DD_VAR_NB_READ, DD_VAR_NB_WRITE,  DD_PORT_NB_READ,

DD_PORT_NB_WRITE, DD_PORT_B_READ, and DD_PORT_B_WRITE.

The root of every MAG file is a  BEHAVIOR object which contains any other objects listed above. The

BEHAVIOR object is hierarchical, meaning that any object can only be contained inside a BEHAVIOR

object and no other.  

The graphical representation of the MAG object tree is shown in Figure 14. In this figure, we can see that

the only other object that can be hierarchical is CHANNEL, which contains LINK. It describes the ports

that connect both behaviors to the channel. CD refers to Control Dependency, and has an attribute pointing

to CONDITION. This object marks if the CD depends on a variable, port or a boolean value. All the data

dependency objects are represented in the figure as DD: these include data dependencies on variables and

ports, blocking and nonblocking reads and write operations. 

Figure 14:  MAG Object tree



5  TLM Verifier

We developed a tool to create, transform and verify TLMs, named TLMVer. It is composed of: 

1. Input API: it is the interface for the MA converter which creates a Model Algebra data structure. It

creates all the MA objects and dependencies between them. 

2. Frontend GUI: shows the graphical representation of the MAG file. It has an interface to allow the

user to apply any transformation in any order to the model. It also checks for isomorphism between

two models. 

3. Backend:  it  responds  to  the  GUI  and  applies  all  the  transformation  rules,  and  performs  the

equivalency checks. 

In Figure 15, we show the verification flow using TLMVer. We would start with an application and goes

through  several  refinement  steps.  Both  applications’  TLMs  are  fed  into  the  MA  Converter,  which

interfaces with our TLMVer API. This creates the MA representation (MAG file) that is the input for the

TLMVer. Finally, the transformations are performed in this step by the tool and a isomorphism is checked

at the end. If both models are isomorphic, we can say that both models are equivalent.

The MA Converter’s task is to parse the TLM and make the appropiate calls to the Input API. This module

has not yet been developed, and the models we use are created by a script calling the API.

Figure 15:  TLM Verifier tool flow



5.1  Isomorphism Checker

Our tool can take two models’ MA representation and check if both graphs are isomorphic. Isomorphism

indicates syntactic equality of 2 models and it is the strongest possible equivalence.  MA representations

have a root node which will be the Virtual Starting Point (VSP). They may or may not have a connected

Virtual Terminating Point (VTP), and commonly has cyclic edges.

One assumption that makes the checker very simple is the case in which a model M1 and a model M2,

both share the same set of subbehaviors with the same name. In this case, the checker algorithm is shown

in Algorithm 10. The checker’s task is to mainly verify the data dependencies between each behavior and

the  variables,  and  to  verify  the  dominance of  each  behavior  to  all  other  behaviors  (line  10).  If  all

dominance checks are true, and the data dependencies are equal, both models are isomorphic.

For each  variable/behavior pair, a check operation is done to see if there exists a data dependency in

which the behavior reads or writes to that variable (line 22). The function  checkOperation is shown in



Algorithm 11.

6  System Level Refinement and Verification

The design methodology for our system is shown in Figure 16. It starts with an executable functional

specification model of the design and is  gradually refined into a cycle accurate model which is  then

forwarded into the traditional manufacturing phase. The refinement process is composed of several steps

in which objects in our models are modified, replaced or eliminated. After each step, the designer ends up

with a new executable model which serves as the base for the next refinement step. As shown in Figure

16, cycle accurate design is not part of our domain and will not be discussed here.



Figure 16:  Refinement based methodology (courtesy of [5])

The refinement depicted in Figure 16 are: 

1. Behavior Partitioning:  the behaviors  are  rearranged to reflect  the mapping of  leaf behaviors to

component behaviors. 

2. Serializing:  Behaviors  that  must  be executed with a  single  controller  are  serialized,  it  converts

parallel composition into sequential compositions. 

3. Communication Scheduling: by modifying the scheduling of bus transactions, the performance of

the design can be improved. 

4. Transaction Routing: Splits transaction links into two links putting a router in between. 

These  key  refinements  were  described  in  detail  in  [5].  In  this  article,  we  will  focus  on  the  design



optimizations depicted in Figure 15. These optimizations can be proven for correctness using the new

transformation rules of Model Algebra.

Figure 17:  Optimizations

The optimization depicted are: 

1. Pipelining:  sequential  behaviors  are  separated  into  different  processing  units  which  run

concurrently. Each behavior will forward data to the next one and immediately begin processing the

next data packet. Between each pair of behaviors a FIFO structure may be modeled. 

2. Duplication:  slow behaviors  may be duplicated  in  order to  compute two or  more data  packets

simultaneously and speed up the pipeline. 

6.1  FIFO modeling

To model communication between behaviors, we can use communication channels, described above. But

for several types of applications, the model of computation used is Kahn Process Networks, were the

behaviors execute concurrently and communicate through unbounded FIFOs. Our model of a FIFO can

have one or more storage variables. Shown in Figure 18 is a 1-place FIFO. The structure is based on two



identity behaviors: e1 and e2. The first one performs the double handshake channel communication with

the preceding behavior and writes out the data into the variable. The second identity behavior reads the

variable and pass it through the channel to the next behavior. 

Figure 18:  1-place FIFO

A FIFO with more storage is constructed simply by repeating this structure. A n-place FIFO representation

is shown in Figure 19.

Figure 19:  n-place FIFO

FIFO Transformation

We can use the transformation rules described in this article to prove that a n-place FIFO can be reduced

to a 1-place FIFO. This is illustrated in Figure 20. The initial model is a subsection of a n-place FIFO

depicting a 2-place FIFO, shown in the upper left corner of the figure. There is a incoming channel ch1

and  an  outgoing  channel  ch3.  The  outgoing  channel  links  with  the  rest  of  the  FIFO.  The  first



transformation rule applied is  the Channel  Resolution Rule,  so channel  ch2 is  resolved into two new

control dependencies: identity behavior  e3 goes to  e1 and  e2 goes to  e4. The Identity behavior  e2 now

writes directly to variable  v2. The result is shown in the upper right model in Figure 20. The next rule

applied is Identity Elimination: e2 is eliminated and the variables v1 and v2 are merged, keeping the name

v1.  The  other  rule  that  was  applied  is  the  Redundant  Control  Dependency  Elimination:  the  control

dependency between vsp and e1 is eliminated. The result is shown in the lower right model in Figure 20.

The last step is to apply again the Identity Elimination Rule to behavior e3. The resulting model is shown

in the lower left part of the figure and it is the same as a 1-place FIFO, proving that any FIFO can be

reduced into a 1-place FIFO applying the basic transformation rules of MA. 



Figure 20:  FIFO transformation

Taking several FIFOs with different sizes, we utilized our Verification tool to measure the transformation

times. We built FIFOs with sizes 1,2,3,4,5 and 10 places and applied the transformation rules. The results

are shown in Figure 21. We can see that, as expected, the total transformation time increases with the size

of the FIFO, but still in the order of seconds.



Figure 21:  FIFO Transformation times

6.2  Pipeline Modeling

Pipelined architectures are a common optimization for systems with certain types of applications. In a

pipeline, data is transferred from one processing module to the next, while all modules run in parallel. This

increases dramatically the throughput of the data packets, but the overall time to process one individual

packet remains the same. It has been commonly used in microprocessor architecture.

Design decisions

To create an optimum pipeline, the designer must adequately partition the behaviors into different stages.

The pipeline throughput depends directly on the slowest module, so the optimum balance in terms of

behavior speed must be achieved while partitioning. The pipeline optimization is illustrated in Figure 22.

In this figure, we start with 4 sequential behaviors labeled ’B1’, ’B2’, ’B3’ and ’B4’. Their estimated

delay times are 5, 10, 20 and 20. The overall delay for each packet would be 55 time units. The optimum

way to create the pipeline would be to use 3 pipeline stages, with behaviors ’B1’ and ’B2’ together in the

first stage. This way, data packets would be processed every 20 time units.



Figure 22:  Pipeline optimization

A simple 3 stage pipeline model is shown in Figure 23. We use channels to communicate the data between

behaviors A, B and C.



Figure 23:  Pipeline Modeling

In Figure 24 we can see the transformation steps to this 3 stage pipelined architecture. Starting in the upper

left corner, we can see the model after applying the Flattening rule to the behaviors shown in Figure 23.

The next  step is  to apply the Channel  Resolution rule,  converting channels  ch1 and  ch2 into control

dependencies. The resulting model is shown in the upper right part of the figure. We can see now that

behaviors  e2 and  e4 write directly to variables  v2 and  v3,  and both now execute behaviors  e1 and  e3

afterwards.  Next,  the  Redundant  Control  Dependency  Elimination  rule  is  applied  and  the  control

dependencies between vsp and e1 and e3 are deleted. This is shown in the lower right part of the figure.

The last step is to apply the Identity Elimination rule to behaviors e1, e2, e3 and e4. We can see that the

model shown in the lower left part of the figure is the representation of a serialized model with behaviors

A, B and C executing one after another, using the data written by the previous stage.



Figure 24:  Pipeline Transformations

In  order  to  test  our  transformation  rules,  we  modeled  a  JPEG  Encoder  using  Model  Algebra’s

representation. The JPEG encoder is composed of 5 main functions, as shown in Figure 25. They are



named: ReadBmp, DCT, Quantize, Zigzag and Huff. They run sequentially in a loop for 180 times, taking

a .bmp file as the input and writing out a .jpeg file. Each function can be mapped into a single core or with

another function. We created 4 different models, all pipelined, with different number of stages. All were

synthesized and implemented into a Xilinx Virtex 4 FPGA board. The mappings for each of the platforms

is  shown  in  Figure  26.  Each  platform  is  composed  of  2  or  more  MicroBlaze  softcore  embedded

processors,  one  shared  bus  (OPB  protocol)  and  one  transducer  serving  as  a  shared  memory.  The

MicroBlazes will exchange data by storing it in the transducer internal FIFO and reading it out from there.

Figure 25:  JPEG Encoder Application.

Figure 26:  Pipelined JPEG platforms

As shown in Figure 27, the execution time decreases as we increase the number of pipeline stages.



Figure 27:  Execution time in a FPGA board

In order to check for equivalence of these different models, we created Model Algebra representations of

all 4 and applied the transformations, and checked for isomorphism with the non-pipelined model. The

transformation time for these 4 models is shown in Figure 28, and the number and type of transformation

rules applied is shown in Figure 29.

Figure 28:  Transformation time in a pipeline architecture



Figure 29:  Transformation rules applied to a pipeline architecture

As we can see in Figure 28, the transformation time for each of the platforms is in the order of seconds,

and scales linearly. In Figure 29, we can observe that the number of transformations also increases linearly

with the number of stages, and all transformation rules applied increase with it.

7  Conclusions

In this article we presented a summary of the system level verification challenges and the Model Algebra

formalism. We described new transformation rules for Model Algebra: channel resolution, control node

merging and behavior merging. Building upon these new transformation rules, we presented useful system

level optimizations, namely pipelining, use of FIFO channels and behavior duplication.

We  showed  how  we  could  model  a  N-place  FIFO  and  a  pipeline,  and  used  Model  Algebra’s

transformation rules to prove their correctness.  

We defined a data structure to describe models written in Model Algebra, named MAG files. This data

structure allowed the description, graphical representation and storage of intermediate and final structures



of these models in MA.

Using Model Algebra’s composition and transformation rules, we developed a software tool that can take

models written in MA (as MAG files), represent them graphically and see transformation rules applied to

them. By modeling a multimedia application such as a JPEG encoder into a pipelined architecture, we

could  prove  that  Model  Algebra’s  representation  of  these  optimizations  on  these  platforms  could  be

successfully transformed and compared with the non pipelined model. The transformation time was fast

(in the order of seconds) and the number of transformation rules increased linearly with the number of

pipeline stages.

The implementation of the software tool gives us more confidence in refinement results, more ability to

explore  different  sequences  of  transformations  and  the  means  to  develop  correct  refinement  and

optimization tools.
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