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Verification of transaction level models of 
embedded systems

	 Lucky Lochi Yu Lo

Abstract

As complexity increases in embedded systems design, there is need for more time for verification purposes.  For 
embedded systems, the only verification that can be done is running test cases, and the number of cases increases 
exponentially. In order to shorten this verification phase of the design, we propose a methodology to do formal 
verification of embedded systems.  In formal verification no test cases are needed, but an mathematical analysis of 
the original model and the refined one. At the present, there is no proven formal verification techniques for a system 
level design of an embedded system. In this article, we present a brief summary of Model Algebra, present two 
new transformation rules and experimental results in isomorphism checking based on these rules. We test this 
transformation rules in various scenarios and prove that it is a promising methodology to improve embedded 
system design.

Keywords: Embedded systems, formal verification, transaction level models.

Resumen 

El aumento en la complejidad en el diseño de los sistemas incrustados ha provocado un retraso en el proceso 
de verificación. Hasta el momento, la única forma de realizar verificación es por medio de simulaciones de casos de 
prueba, y estos casos han aumentado exponencialmente. Para poder acortar la fase de verificación, proponemos una 
metodología para realizar verificación formal de sistemas incrustados. En este tipo de verificación, no se necesitan 
casos de prueba sino análisis matemático del modelo original y el modelo refinado.  Actualmente, no existen técnicas de 
verificación formal probadas para un diseño a nivel de sistemas de un sistema incrustado.  En este artículo, mostramos 
un resumen del Álgebra de Modelos, y presentamos dos reglas de transformación y resultados experimentales en la 
revisión por isomorfismo  basado en estas reglas. Probamos estas reglas de transformación en varios casos y probamos 
que es una metodología promisoria que mejoraría el diseño de sistemas incrustados.

Palabras clave: Sistemas incrustados, proceso de verificación formal, pre-análisis bidimensional, modelos transaccionales.

Recibido: 22 de Agosto de 2013 • Aprobado: 14 de Octubre de 2013

1.	 INTRODUCTION

1.1	 Verification in the Traditional Design 
Flow

In the traditional hardware design flow, based 
on a specification (or “golden”) model, a Register-
Transfer-Level model is created manually.  This 
phase introduces errors in the design, since it’s 

done manually, so the developed RTL must be 
verified against the “golden” model. This step is 
called the verification process. This is illustrated 
in Figure 1. 

Verification Challenges

The verification process faces the same 
challenges as the design process: due to the 



Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica76

increasing complexity of embedded systems, 
both have to explore new approaches to deliver 
their tasks in shorter time-to-market time frames. 
Nowadays, verification time consumes more 
than half of the design process stage. There are 
several reasons causing this: for one part, higher 
complexity of designs mandate longer verification 
phases. Since most of the verification is based 
on simulations, the low speed of co-simulations 
slows down the process. Another consequence of 
the higher complexity is the number of test cases 
needed to functionally verify the model. This 
number of test cases increases dramatically, and 
its creation and selection is time consuming. 

Verification Methods

We can classify verification methods into two: 
simulation-based methods and formal methods. 
Simulation based verification takes a set of inputs, 
feeds them into the model, and compares the set 
of outputs to the expected or “correct” set of 
outputs, usually obtained from the golden model. 
The model is referred as DUT or Device Under 
Test. This method is the most commonly used, 

as mentioned above, and it is an extremely time-
consuming process. The set of test cases may be 
incredibly large or almost infinite, so it is up to 
the verification engineer to select and write the 
most “representative” cases to use. In summary, 
simulation based methods are lengthy and very 
labor-intensive. The second verification method 
is formal verification. Here, simulation is not 
needed. Mathematical methods are used to verify 
a model. There are three approaches: equivalence 
checking, model checking and theorem proving. 
Equivalence checking tests for correctness of 
synthesis and optimization of models, model 
checking tests a formal representation of a 
model to see if a specified property is satisfied 
and finally, theorem proving takes the model’s 
mathematical representation of a specification 
model and an implementation model and proves 
equivalence by using axioms and inference rules.

1.2	 System Level Design and TLMs

Due to the challenges mentioned above, the 
level of abstraction of the designs has moved 
up to the System Level. Raising the level of 

Figure 1. Verification phase in the design flow.
Source: Lochi, 2013.
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Model Algebra [1,2,3] is one such 
formalism that can be used for refinement and 
verification of Transaction Level Models. The 
basic concept is the separation of functional and 
architectural modeling. Executable models are 
defined in the functional space which platform 
netlists are defined in the architecture space. 
Subsequently, a mapping is defined from the 
functional to architecture space, that allows 
designers to evaluate useful metrics. A key 
assumption is a many to one mapping from 
the function space to the architecture space. 
This constraint is necessary to produce an 
unambiguous design. 

abstraction from RTL to System Level greatly 
reduces the number of components, thus speeding 
the design time, simulation time and design space 
exploration time. Recently, TLMs have become 
the optimum way of doing system level design. 

For TLMs to be synthesizable and verifiable, 
well defined TLM semantics are required. Existing 
formalism for RTL design such as FSDM or 
boolean algebra are insufficient to express TLMs. 
Therefore, new formalisms for TLM based design 
are needed. Furthermore, the TLM semantics must 
allow simulation models written in languages like 
SystemC to be easily abstracted into mathematical 
expressions for symbolic manipulation.

Figure 2. Architecture and functional refinement in 
platform based design.
Source: Lochi, 2013.

Figure 2(a) shows a simple mapping of a 
sequential composition of two functional objects 
(called behaviors) onto a processing element 
(PE) in the architecture. Now, assume that the 
designers figures that this mapping does not 
produce a satisfactory execution time. So, he or 
she may select another PE (PE2) that is optimized 
for behavior b2. The new architecture is shown 
in 2(b). However, in this new function and 
architecture specification, there is no feasible 
mapping. This is because a sequential composition 
cannot be mapped to a concurrent architecture. 
Therefore, the function must now be refined to the 
one shown in 2(c) by isolating b2 into a concurrent 

process. A synchronization channel is added to keep 
the execution order between b1 and b2. This new 
refined functional model is now mappable to the 
refined architecture.

As we saw in the optimization example above, 
functional models may need to be refined every time 
the architecture netlist is modified. It is imperative 
that each such refinement be functionality-preserving. 
This poses the TLM functional equivalence problem 
as illustrated in Figure 3. The problem is to verify 
that any functional refinement produces a TLM that 
is functionally equivalent to the original TLM. In 
this article we propose such a tool based on Model 
Algebra that verifies equivalence of the two well-
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formed TLMs. By well-formed, we mean that the 
TLMs must follow the semantics of the objects 
and composition rules of Model Algebra. Here, 
we present new transformation rules that will 
allow more refinements in the models. In addition, 
we developed specific application programming 
interfaces (APIs) that facilitate construction 
of algebraic TLMs and to perform symbolic 
transformations on them in conformance with the 
rules of Model Algebra.

2.	 Model Algebra

Model Algebra is a formalism for refinement 
and verification of TLMs. A formalism is a set of 
objects and composition rules that represent the 
relationship between these objects. Model Algebra 
aims to express executable system models with 
structural details, using the same composition 
rules and objects. Model Algebra’s theory was 
published in [1], so only a brief summary will be 
presented below. 

2.1	 Objects

The objects of Model Algebra consist 
of: Behaviors, Channels, Variables, Behavior 
interfaces, and Behavior ports.  Model Algebra can 
be represented graphically in a Behavior Control 
Graph (BCG),[1] which shows the control flow 

of any model in MA. In BCG, there are two types 
of nodes: behavior nodes and control flow nodes.  

Behaviors

They are the computational units of Model 
Algebra. It has ports that allows it to connect to 
other behaviors using interfaces. It is drawn using 
a rounded rectangle, shown in Figure 4. They can 
be hierarchical, meaning that they can contain 
other behaviors and any other MA objects inside. 
There is also a special kind of behaviors called 
Identity behaviors, which read data from its in 
port and writes it out to its out port. It essentially 

Figure 3. TLM equivalence verification problem.
Source: Lochi, 2013.

Figure 4. Behavior in Model Algebra.
Source: Lochi, 2013.
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does not do any kind of computation inside 
it, it only forwards the data from one port 
to another. Two notable identity behaviors 
present in any hierarchical behavior are the 
Virtual Starting Point (VSP) behavior and the 
Virtual Terminating Point (VTP) behavior. As 
their names specify, computation starts at the 
VSP and ends at the VTP. 

Channels

	 Are the communication elements that go 
from behavior to behavior. 

Variables

Allow communication by the way of storing 
information and being read by a behavior. In its 
graphical representation, it is draw as a rectangle. 
In Figure 4, the behavior Beh 1 reads from a 
variable v1 and writes it to the variable v2.

2.2	 Composition Rules

Composition rules are the relations between 
objects in Model Algebra. 

Control flow

It determines the execution order of behaviors 
during a simulation. All predecessing behaviors 
must finish and a condition be true in order for 
the successor behavior to start. It is formally 
expressed as:

q: b1&b2&...&bn			   (1)

This expression states that for behavior b 
to execute, the condition q must be true and the 
behaviors  must all execute first.  It is represented 
graphically as a circle with edges pointing towards 
it from the preceding behaviors and has an edge 
toward the successor behavior. This can be seen 
in Figure 5.

Blocking and non-blocking operations

Behaviors may use their ports to read or write 
to/from a variable or another port. These read and 
write operations may be either blocking or non-
blocking operations. We will refer to these opera-
tions as data dependencies. They are represented 
as straight arrows between ports and variables. 

2.3	 Transformation Rules

A model can be transformed by rearranging 
and replacing objects. Model refinement is basi-
cally a well-defined sequence of transformations. 
If each of these transformations is proven correct 
in a formal context, then we can perform verifica-
tion by correct refinement with two given models. 
Starting with a test model M, a refined (stated as 
the function R()) model M’ can be defined as the 
successive transformations on M: 

M '= R(M) = tn (tn-1(..t1(M)...)	                   (2)

Hierarchical Behavior Flattening

Since we only need the leaf level behaviors, 
hierarchical behaviors can be “flattened” to reveal 
its sub-behaviors. Basically there are two types of 
objects that are modified in the flattening process: 

Figure 5. Control Node.
Source: Lochi, 2013.
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control dependencies and data dependencies.  Con-
trol dependencies are modified because once the 
hierarchical behavior has been flattened, the con-
trol dependency leading to it is directed instead to 
its VSP behavior, and the VTP will take the place 
of the as the predecessor in all Control Dependen-
cies that included the parent behavior.  Data depen-
dencies are modified when all ports of the parent 
behavior are flattened out. The data dependency is 
merged with the port data dependency inside the 
parent. This includes the links in all channels, ex-
tending the channel to the subbehavior.

Identity Elimination

Since the identity behavior does not perform 
any computation, it can be removed from the model 
after resolving data and control dependencies. Any 
variables being read and written by the identity 
behavior are merged, and the ports removed. The 
control nodes preceding the behavior are merged 
with the control nodes succeeding the identity. 
This is illustrated in Figure 6. Unresolved channel 
dependencies in an identity behavior prevents it 
from being eliminated; channel resolution has to 
be applied first before removing its ports. 

Redundant Control Dependency Elimination

This rule removes unneeded control de-
pendencies. Key to this rule is the concept of 
dominance of behaviors: if a behavior A always 
executes at least once for every execution of 
behavior B, then we can se that A is a domi-
nator of B. Now, given 3 behaviors b1, b2 and 
b3, shown in Figure 7(a), since b1 dominates 
b2, we know that for every execution of b3, 
the other two behaviors have already executed, 
hence, the control edge from b1 to b3 is unne-
cessary, so it can be eliminated. This can be 
seen in Figure 7(b).

Control Relaxation

Given a model in Figure 8(a), if there is 
no data dependency between behavior b1 and 
behavior b2, and the control node between them 
has no other port or variable dependency, then b1 
and b2 can execute concurrently since the order 
of their executions does not alter any variable 
trace. Both behaviors would still continue on to 
behavior b3, as seen in Figure 8(b).

3.	 Transaction Level Modeling

In order to accurately model TLMs, we 
improved some aspects of Model Algebra and 
included new transformation rules. 

3.1  Channel Resolution Rule

We refined channels to be point to point 
between two behaviors, and will have double 
handshake semantics. These behaviors must be 
either hierarchical behaviors or identity behaviors. 
The channel will also no longer hold addresses, 
and any data to be transferred will be read by the 
identity behavior on one side and written out by 
the identity behavior on the other side. It is best 
illustrated in Figure 9.

Figure 6. Identity Elimination Rule.
Source: Lochi, 2013.
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Figure 7. Redundant Control Dependency Elimination Rule.
Source: Lochi, 2013.

Figure 8. Control Relaxation Rule.
Source: Lochi, 2013.
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3.2	 Principle of Duplication

When designing embedded systems, the de-
signers may encounter modules that slow down 
the execution flow because of their slow hardware 
response. In Figure 10 a), let’s say that module B 
is the one with a big delay. One of the common 
solutions would be to simply duplicate the module 

in question (hardware IP for instance) and do a pa-
rallel execution to speed the execution, as shown in 
b). Module A will forward half of its computation 
to module B’ and half to B”, assuming that both 
modules perform identical computation tasks. Fi-
nally, our system is shown in c), with 2 modules B’ 
and B” in an endless loop, performing calculations 
for A and forwarding the result to C.

Figure 9: Resolution of channels into control dependencies.
Source: Lochi, 2013.

Figure 10. Principle of duplication.
Source: Lochi, 2013.
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3.3	B ehavior Type
The principle of duplication shown in the 

previous section is sound if and only if the two 
behaviors running in parallel are identical. In or-
der to include this property into Model Algebra, 
we introduce Behavior Type: each behavior will 
have a type, and may be shown explicitly after 
the behavior name, separated by a colon. Figure 
11 updates the figures in c) (from Figure 10) with 
the behavior type and with the proper Model Al-
gebra objects.

For two behaviors to be of the same type, 
there is one underlying condition: both behaviors 
have to have the same ports and these ports 
have to have the same bindings to other ports or 
variables. If this is not met, the two behaviors 
shall be considered of different type.

•	 Their sets of successor behaviors are equal. 
In other words, the execution of any of the 
two behaviors is followed immediately by the 
execution of one specific behavior. 

3.5	 Control Node Merging

This transformation rule allows to reduce the 
number of control nodes by merging two or more 
nodes if: 
•	 Their sets of predecessor behaviors are equal. 
•	 They have the same successor behavior. 

4.	 Model Algebra Data Structure

In order to be able to properly manipulate and 
transform a model described in Model Algebra, 
we need a suitable data structure to describe any 
posible model. We now describe the Model Al-
gebra Data Structure used in our tool. Our Model 
Algebra Data Structure is saved in the XML for-
mat [4] and have the extension .MAG. The set of 
rules that all MAG files conform to is expressed in 
a XML Schema Definition (XSD) [5].  MAG files 
are composed of the following elements: BEHA-
VIOR, VARIABLE, CONDITION, CHANNEL, 
LINK, PORT, CD, DD_VAR_NB_READ,	
DD_VAR_NB_WRITE, DD_PORT_NB_READ, 
DD_PORT_NB_WRITE, DD_PORT_B_READ, 
and DD_PORT_B_WRITE.

The root of every MAG file is a BEHAVIOR 
object which contains any other objects listed 
above. The BEHAVIOR object is hierarchical, 
meaning that any object can only be contained in-
side a BEHAVIOR object and no other.  

The graphical representation of the MAG ob-
ject tree is shown in Figure 14. In this figure, we 
can see that the only other object that can be hierar-
chical is CHANNEL, which contains LINK. It des-
cribes the ports that connect both behaviors to the 
channel. CD refers to Control Dependency, and has 
an attribute pointing to CONDITION. This object 
marks if the CD depends on a variable, port or a 
boolean value. All the data dependency objects are 
represented in the figure as DD: these include data 
dependencies on variables and ports, blockingand 
nonblocking reads and write operations. 

Figure 11. Behavior type.
Source: Lochi, 2013.

3.4	B ehavior Merging

This transformation merges two behaviors if 
the following conditions are met:

•	 Both behaviors are of the same type. This 
implies that both behaviors have the same 
bindings to the same ports and/or variables. 
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Figure 12. Behavior Merging rule.
Source: Lochi, 2013.
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Figure 13. Control Merging rule.
Source: Lochi, 2013.

Figure 14. MAG Object tree.
Source: Lochi, 2013.
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5.	 TLM Verifier

We developed a tool to create, transform and 
verify TLMs, named TLMVer. It is composed of: 

•	 Input API: it is the interface for the MA converter 
which creates a Model Algebra data structure. 
It creates all the MA objects and dependencies 
between them. 

•	 Frontend GUI: shows the graphical 
representation of the MAG file. It has an 
interface to allow the user to apply any 
transformation in any order to the model. It 
also checks for isomorphism between two 
models. 

•	 Backend: it responds to the GUI and applies 
all the transformation rules, and performs the 
equivalency checks. 

In Figure 15, we show the verification 
flow using TLMVer. We would start with an 
application and goes through several refinement 
steps. Both applications’ TLMs are fed into the 
MA Converter, which interfaces with our TLMVer 
API. This creates the MA representation (MAG 
file) that is the input for the TLMVer. Finally, the 
transformations are performed in this step by the 
tool and a isomorphism is checked at the end. If 
both models are isomorphic, we can say that both 
models are equivalent.

The MA Converter’s task is to parse the 
TLM and make the appropiate calls to the Input 
API. This module has not yet been developed, 
and the models we use are created by a script 
calling the API.

5.1	 Isomorphism Checker

Our tool can take two models’ MA represen-
tation and check if both graphs are isomorphic. 
Isomorphism indicates syntactic equality of 2 mo-
dels and it is the strongest possible equivalence.  
MA representations have a root node which will 
be the Virtual Starting Point (VSP). They may or 
may not have a connected Virtual Terminating 
Point (VTP), and commonly has cyclic edges.

One assumption that makes the checker very 
simple is the case in which a model M1 and a mo-
del M2, both share the same set of subbehaviors 
with the same name. In this case, the checker al-
gorithm is shown in Algorithm 1. The checker’s 
task is to mainly verify the data dependencies 
between each behavior and the variables, and to 
verify the dominance of each behavior to all other 
behaviors (line 10). If all dominance checks are 
true, and the data dependencies are equal, both 
models are isomorphic.

For each variable/behavior pair, a check 
operation is done to see if there exists a data 

Figure 15. TLM Verifier tool flow.
Source: Lochi, 2013.
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dependency in which the behavior reads or 
writes to that variable (line 22). The function 
checkOperation is shown in Algorithm 2.

6.	 System Level Refinement and 
Verification Experimental 
setup

The design methodology for our system is 
shown in Figure 16. It starts with an executable 
functional specification model of the design and 

is gradually refined into a cycle accurate model 
which is then forwarded into the traditional 
manufacturing phase. The refinement process 
is composed of several steps in which objects 
in our models are modified, replaced or 
eliminated. After each step, the designer ends 
up with a new executable model which serves as 
the base for the next refinement step. As shown 
in Figure 16, cycle accurate design is not part 
of our domain and will not be discussed here.

The refinement depicted in Figure 16 are: 

Algorithm 1.
Source: Lochi, 2013.
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•	 Behavior Partitioning: the behaviors are rea-
rranged to reflect the mapping of leaf beha-
viors to component behaviors. 

•	 Serializing: Behaviors that must be execu-
ted with a single controller are serialized, it 
converts parallel composition into sequential 
compositions. 

•	 Communication Scheduling: by modifying 
the scheduling of bus transactions, the per-
formance of the design can be improved. 

•	 Transaction Routing: Splits transaction links 
into two links putting a router in between. 

•	 These key refinements were described in de-
tail in [3]. In this article, we will focus on the 
design optimizations depicted in Figure 17. 
These optimizations can be proven for co-
rrectness using the new transformation rules 
of Model Algebra.

The optimization depicted are:
 

•	 Pipelining: sequential behaviors are separa-
ted into different processing units which run 
concurrently. Each behavior will forward 
data to the next one and immediately begin 

processing the next data packet. Between 
each pair of behaviors a FIFO structure may 
be modeled. 

•	 Duplication: slow behaviors may be duplica-
ted in order to compute two or more data pac-
kets simultaneously and speed up the pipeline. 

6.1	 FIFO modeling 

To model communication between beha-
viors, we can use communication channels, 
described above. But for several types of appli-
cations, the model of computation used is Kahn 
Process Networks, were the behaviors execute 
concurrently and communicate through unboun-
ded FIFOs. Our model of a FIFO can have one or 
more storage variables. Shown in Figure 18 is a 
1-place FIFO. The structure is based on two iden-
tity behaviors: e1 and e2. The first one performs 
the double handshake channel communication 
with the preceding behavior and writes out the 
data into the variable. The second identity be-
havior reads the variable and pass it through the 
channel to the next behavior. 

Algorithm 2.
Source: Lochi, 2013.
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Figure 16. Refinement based methodology (courtesy of [3]).
Source: Lochi, 2013.
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Figure 17. Optimizations.
Source: Lochi, 2013.

Figure 18. 1-place FIFO.
Source: Lochi, 2013.
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Results of FIFO Transformation

We can use the transformation rules described 
in this article to prove that a n-place FIFO can be 
reduced to a 1-place FIFO. This is illustrated in 
Figure 20. The initial model is a subsection of a 
n-place FIFO depicting a 2-place FIFO, shown 
in the upper left corner of the figure. There is a 
incoming channel ch1 and an outgoing channel 
ch3. The outgoing channel links with the rest of 
the FIFO. The first transformation rule applied 
is the Channel Resolution Rule, so channel ch2 
is resolved into two new control dependencies: 
identity behavior e3 goes to e1 and e2 goes to 
e4. The Identity behavior e2 now writes directly 
to variable v2. The result is shown in the upper 
right model in Figure 20. The next rule applied 
is Identity Elimination: e2 is eliminated and the 
variables v1 and v2 are merged, keeping the 

name v1. The other rule that was applied is the 
Redundant Control Dependency Elimination: 
the control dependency between vsp and e1 
is eliminated. The result is shown in the lower 
right model in Figure 20. The last step is to apply 
again the Identity Elimination Rule to behavior 
e3. The resulting model is shown in the lower left 
part of the figure and it is the same as a 1-place 
FIFO, proving that any FIFO can be reduced into 
a 1-place FIFO applying the basic transformation 
rules of MA. 

Taking several FIFOs with different sizes, 
we utilized our verification tool to measure 
the transformation times. We built FIFOs with 
sizes 1,2,3,4,5 and 10 places and applied the 
transformation rules. The results are shown in 
Figure 21. We can see that, as expected, the total 
transformation time increases with the size of the 
FIFO, but still in the order of seconds.

Figure 19. n-place FIFO.
Source: Lochi, 2013.
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Figure 20. FIFO transformation.
Source: Lochi, 2013.
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6.2  Pipeline Modeling

Pipelined architectures are a common 
optimization for systems with certain types of 
applications. In a pipeline, data is transferred 
from one processing module to the next, while 
all modules run in parallel. This increases 
dramatically the throughput of the data packets, 
but the overall time to process one individual 
packet remains the same. It has been commonly 
used in microprocessor architecture.

Design decisions

To create an optimum pipeline, the designer 
must adequately partition the behaviors into 

different stages. The pipeline throughput 
depends directly on the slowest module, so the 
optimum balance in terms of behavior speed 
must be achieved while partitioning. The 
pipeline optimization is illustrated in Figure 
22. In this figure, we start with 4 sequential 
behaviors labeled ’B1’, ’B2’, ’B3’ and ’B4’. 
Their estimated delay times are 5, 10, 20 and 
20. The overall delay for each packet would be 
55 time units. The optimum way to create the 
pipeline would be to use 3 pipeline stages, with 
behaviors ’B1’ and ’B2’ together in the first 
stage. This way, data packets would be processed 
every 20 time units.

A simple 3 stage pipeline model is shown in 
Figure 23. We use channels to communicate the 
data between behaviors A, B and C.

Figure 21. FIFO Transformation times.
Source: Lochi, 2013.
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Figure 22. Pipeline optimization.

Source: Lochi, 2013.
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Verification results

In Figure 24 we can see the transformation 
steps to this 3 stage pipelined architecture. 
Starting in the upper left corner, we can see the 
model after applying the Flattening rule to the 
behaviors shown in Figure 23. The next step is 
to apply the Channel Resolution rule, converting 
channels ch1 and ch2 into control dependencies. 
The resulting model is shown in the upper 
right part of the figure. We can see now that 
behaviors e2 and e4 write directly to variables 
v2 and v3, and both now execute behaviors e1 
and e3 afterwards. Next, the Redundant Control 
Dependency Elimination rule is applied and the 
control dependencies between vsp and e1 and 
e3 are deleted. This is shown in the lower right 
part of the figure. The last step is to apply the 
Identity Elimination rule to behaviors e1, e2, e3 
and e4. We can see that the model shown in the 
lower left part of the figure is the representation 
of a serialized model with behaviors A, B and 

C executing one after another, using the data 
written by the previous stage.

In order to test our transformation rules, we 
modeled a JPEG Encoder using Model Algebra’s 
representation. The JPEG encoder is composed 
of 5 main functions, as shown in Figure 25. They 
are named: ReadBmp, DCT, Quantize, Zigzag 
and Huff. They run sequentially in a loop for 180 
times, taking a .bmp file as the input and writing 
out a .jpeg file. Each function can be mapped 
into a single core or with another function. We 
created 4 different models, all pipelined, with 
different number of stages. All were synthesized 
and implemented into a Xilinx Virtex 4 FPGA 
board. The mappings for each of the platforms is 
shown in Figure 26. Each platform is composed 
of 2 or more MicroBlaze softcore embedded 
processors, one shared bus (OPB protocol) and 
one transducer serving as a shared memory. The 
MicroBlazes will exchange data by storing it in 
the transducer internal FIFO and reading it out 
from there.

Figure 23. Pipeline Modeling.
Source: Lochi, 2013.
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Figure 24. Pipeline Transformations

Source: Lochi, 2013.
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Figure 25. JPEG Encoder Application.

Figure 26. Pipelined JPEG platforms.
Source: Lochi, 2013.
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Figure 27. Execution time in a FPGA board.

Figure 28. Transformation time in a pipeline architecture.

Source: Lochi, 2013.

As shown in Figure 27, the execution time de-
creases as we increase the number of pipeline stages.

In order to check for equivalence of 
these different models, we created Model 
Algebra representations of all 4 and applied the 
transformations, and checked for isomorphism 
with the non-pipelined model. The transformation 
time for these 4 models is shown in Figure 28, 

and the number and type of transformation rules 
applied is shown in Figure 29.

As we can see in Figure 28, the transformation 
time for each of the platforms is in the order of 
seconds, and scales linearly. In Figure 29, we can 
observe that the number of transformations also 
increases linearly with the number of stages, and 
all transformation rules applied increase with it.
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Figure 29. Transformation rules applied to a pipeline architecture.
Source: Lochi, 2013.

7.	 Conclusions

In this article we presented a summary of 
the system level verification challenges and 
the Model Algebra formalism. We described 
new transformation rules for Model Algebra: 
channel resolution, control node merging and 
behavior merging. Building upon these new 
transformation rules, we presented useful system 
level optimizations, namely pipelining, use of 
FIFO channels and behavior duplication.

We showed how we could model a N-place 
FIFO and a pipeline, and used Model Algebra’s 
transformation rules to prove their correctness.  

We defined a data structure to describe models 
written in Model Algebra, named MAG files. This 
data structure allowed the description, graphical 
representation and storage of intermediate and 
final structures of these models in MA.

Using Model Algebra’s composition and 
transformation rules, we developed a software 
tool that can take models written in MA (as 
MAG files), represent them graphically and 
see transformation rules applied to them. By 
modeling a multimedia application such as a 
JPEG encoder into a pipelined architecture, we 
could prove that Model Algebra’s representation 
of these optimizations on these platforms could 
be successfully transformed and compared with 
the non pipelined model. The transformation 
time was fast (in the order of seconds) and the 
number of transformation rules increased linearly 
with the number of pipeline stages.

The implementation of the software tool 
gives us more confidence in refinement results, 
more ability to explore different sequences of 
transformations and the means to develop correct 
refinement and optimization tools.
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8.	 Recommendations and future 
work

There is need to develop more transformation 
rules in order to check for isomorphism in 
more dissimilar models.  As the number of 
transformation rule increases, the verifier tool 
will be more versatile and more complex designs 
will be formally verifiable.  This will reduce the 
design and verification time, improving time-to-
market parameters and increasing productivity.
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