
1

3 4

2

60

30

15

45

AGOSTO/DICIEMBRE 2013 - VOLUMEN 23 Número (2)

R
E

V
IS

TA
 IN

G
E

N
IE

R
ÍA

Vo
lu

m
en

 2
3

(2
)

A
go

st
o

/ D
ic

ie
m

br
e

20
13

Revista Semestral de la Universidad de Costa Rica

Vol. 23 (2) Ago/Dic 2013

CONTENIDO

 Artículos

1. Un enfoque para evaluar la vulnerabilidad sísmica de edificios
 de concreto armado de baja altura... 13-30
 Vielma, Juan Carlos; Barbat, Alex; Herrera Indira; Ugel, Ronald; Martínez, Yolsanie.

2. Determinación del coeficiente de película externo en serpentines mediante transferencia
 de calor por convección forzada en tanques agitados utilizando fluidos newtonianos................... 31-46
 Miranda, Barbara.

3. Frecuencia fundamental de entrepisos: métodos analíticos y validación experimental.................. 47-64
 Esquivel, Luis Carlos; Miranda, Pío Alberto.

4. Elementos de pre-análisis de diseño de redes geodésicas para el control de obras civiles............. 65-73
 Araque, Juan.

5. Verification of Transaction Level Models of Embedded Systems.. 75-100
 Lochi, Yu Lo.

 Notas técnicas

1. Actualización de norma costarricense sobre niveles de iluminancia
 y condiciones de iluminación incluyendo Fotometría... 103-106
 Marín, Luis Diego.

2. Listas de espera en los servicios públicos desde una perspectiva de manufactura.......................... 107-119
 Pacheco, Ronny.

 Proyectos de Graduación 2012

 Lista de proyectos de graduación de grado y posgrado del año 2012
 de la Facultad de Ingeniería de la Universidad de Costa Rica.. 123-144

 Normas

 Normas para la presentación de artículos a la Revista Ingeniería... 147-153

http://revistas.ucr.ac.cr/index.php/ingenieria
ISSN 2215-2652

Ingeniería 23 (2): 75-95, ISSN: 2215-2652; 2013. San José, Costa Rica

Verification of transaction level models of
embedded systems

	 Lucky Lochi Yu Lo

Abstract

As complexity increases in embedded systems design, there is need for more time for verification purposes. For
embedded systems, the only verification that can be done is running test cases, and the number of cases increases
exponentially. In order to shorten this verification phase of the design, we propose a methodology to do formal
verification of embedded systems. In formal verification no test cases are needed, but an mathematical analysis of
the original model and the refined one. At the present, there is no proven formal verification techniques for a system
level design of an embedded system. In this article, we present a brief summary of Model Algebra, present two
new transformation rules and experimental results in isomorphism checking based on these rules. We test this
transformation rules in various scenarios and prove that it is a promising methodology to improve embedded
system design.

Keywords: Embedded systems, formal verification, transaction level models.

Resumen

El aumento en la complejidad en el diseño de los sistemas incrustados ha provocado un retraso en el proceso
de verificación. Hasta el momento, la única forma de realizar verificación es por medio de simulaciones de casos de
prueba, y estos casos han aumentado exponencialmente. Para poder acortar la fase de verificación, proponemos una
metodología para realizar verificación formal de sistemas incrustados. En este tipo de verificación, no se necesitan
casos de prueba sino análisis matemático del modelo original y el modelo refinado. Actualmente, no existen técnicas de
verificación formal probadas para un diseño a nivel de sistemas de un sistema incrustado. En este artículo, mostramos
un resumen del Álgebra de Modelos, y presentamos dos reglas de transformación y resultados experimentales en la
revisión por isomorfismo basado en estas reglas. Probamos estas reglas de transformación en varios casos y probamos
que es una metodología promisoria que mejoraría el diseño de sistemas incrustados.

Palabras clave: Sistemas incrustados, proceso de verificación formal, pre-análisis bidimensional, modelos transaccionales.

Recibido: 22 de Agosto de 2013 • Aprobado: 14 de Octubre de 2013

1.	 INTRODUCTION

1.1	 Verification in the Traditional Design
Flow

In the traditional hardware design flow, based
on a specification (or “golden”) model, a Register-
Transfer-Level model is created manually. This
phase introduces errors in the design, since it’s

done manually, so the developed RTL must be
verified against the “golden” model. This step is
called the verification process. This is illustrated
in Figure 1.

Verification Challenges

The verification process faces the same
challenges as the design process: due to the

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica76

increasing complexity of embedded systems,
both have to explore new approaches to deliver
their tasks in shorter time-to-market time frames.
Nowadays, verification time consumes more
than half of the design process stage. There are
several reasons causing this: for one part, higher
complexity of designs mandate longer verification
phases. Since most of the verification is based
on simulations, the low speed of co-simulations
slows down the process. Another consequence of
the higher complexity is the number of test cases
needed to functionally verify the model. This
number of test cases increases dramatically, and
its creation and selection is time consuming.

Verification Methods

We can classify verification methods into two:
simulation-based methods and formal methods.
Simulation based verification takes a set of inputs,
feeds them into the model, and compares the set
of outputs to the expected or “correct” set of
outputs, usually obtained from the golden model.
The model is referred as DUT or Device Under
Test. This method is the most commonly used,

as mentioned above, and it is an extremely time-
consuming process. The set of test cases may be
incredibly large or almost infinite, so it is up to
the verification engineer to select and write the
most “representative” cases to use. In summary,
simulation based methods are lengthy and very
labor-intensive. The second verification method
is formal verification. Here, simulation is not
needed. Mathematical methods are used to verify
a model. There are three approaches: equivalence
checking, model checking and theorem proving.
Equivalence checking tests for correctness of
synthesis and optimization of models, model
checking tests a formal representation of a
model to see if a specified property is satisfied
and finally, theorem proving takes the model’s
mathematical representation of a specification
model and an implementation model and proves
equivalence by using axioms and inference rules.

1.2	 System Level Design and TLMs

Due to the challenges mentioned above, the
level of abstraction of the designs has moved
up to the System Level. Raising the level of

Figure 1. Verification phase in the design flow.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 77

Model Algebra [1,2,3] is one such
formalism that can be used for refinement and
verification of Transaction Level Models. The
basic concept is the separation of functional and
architectural modeling. Executable models are
defined in the functional space which platform
netlists are defined in the architecture space.
Subsequently, a mapping is defined from the
functional to architecture space, that allows
designers to evaluate useful metrics. A key
assumption is a many to one mapping from
the function space to the architecture space.
This constraint is necessary to produce an
unambiguous design.

abstraction from RTL to System Level greatly
reduces the number of components, thus speeding
the design time, simulation time and design space
exploration time. Recently, TLMs have become
the optimum way of doing system level design.

For TLMs to be synthesizable and verifiable,
well defined TLM semantics are required. Existing
formalism for RTL design such as FSDM or
boolean algebra are insufficient to express TLMs.
Therefore, new formalisms for TLM based design
are needed. Furthermore, the TLM semantics must
allow simulation models written in languages like
SystemC to be easily abstracted into mathematical
expressions for symbolic manipulation.

Figure 2. Architecture and functional refinement in
platform based design.
Source: Lochi, 2013.

Figure 2(a) shows a simple mapping of a
sequential composition of two functional objects
(called behaviors) onto a processing element
(PE) in the architecture. Now, assume that the
designers figures that this mapping does not
produce a satisfactory execution time. So, he or
she may select another PE (PE2) that is optimized
for behavior b2. The new architecture is shown
in 2(b). However, in this new function and
architecture specification, there is no feasible
mapping. This is because a sequential composition
cannot be mapped to a concurrent architecture.
Therefore, the function must now be refined to the
one shown in 2(c) by isolating b2 into a concurrent

process. A synchronization channel is added to keep
the execution order between b1 and b2. This new
refined functional model is now mappable to the
refined architecture.

As we saw in the optimization example above,
functional models may need to be refined every time
the architecture netlist is modified. It is imperative
that each such refinement be functionality-preserving.
This poses the TLM functional equivalence problem
as illustrated in Figure 3. The problem is to verify
that any functional refinement produces a TLM that
is functionally equivalent to the original TLM. In
this article we propose such a tool based on Model
Algebra that verifies equivalence of the two well-

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica78

formed TLMs. By well-formed, we mean that the
TLMs must follow the semantics of the objects
and composition rules of Model Algebra. Here,
we present new transformation rules that will
allow more refinements in the models. In addition,
we developed specific application programming
interfaces (APIs) that facilitate construction
of algebraic TLMs and to perform symbolic
transformations on them in conformance with the
rules of Model Algebra.

2.	 Model Algebra

Model Algebra is a formalism for refinement
and verification of TLMs. A formalism is a set of
objects and composition rules that represent the
relationship between these objects. Model Algebra
aims to express executable system models with
structural details, using the same composition
rules and objects. Model Algebra’s theory was
published in [1], so only a brief summary will be
presented below.

2.1	 Objects

The objects of Model Algebra consist
of: Behaviors, Channels, Variables, Behavior
interfaces, and Behavior ports. Model Algebra can
be represented graphically in a Behavior Control
Graph (BCG),[1] which shows the control flow

of any model in MA. In BCG, there are two types
of nodes: behavior nodes and control flow nodes.

Behaviors

They are the computational units of Model
Algebra. It has ports that allows it to connect to
other behaviors using interfaces. It is drawn using
a rounded rectangle, shown in Figure 4. They can
be hierarchical, meaning that they can contain
other behaviors and any other MA objects inside.
There is also a special kind of behaviors called
Identity behaviors, which read data from its in
port and writes it out to its out port. It essentially

Figure 3. TLM equivalence verification problem.
Source: Lochi, 2013.

Figure 4. Behavior in Model Algebra.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 79

does not do any kind of computation inside
it, it only forwards the data from one port
to another. Two notable identity behaviors
present in any hierarchical behavior are the
Virtual Starting Point (VSP) behavior and the
Virtual Terminating Point (VTP) behavior. As
their names specify, computation starts at the
VSP and ends at the VTP.

Channels

	 Are the communication elements that go
from behavior to behavior.

Variables

Allow communication by the way of storing
information and being read by a behavior. In its
graphical representation, it is draw as a rectangle.
In Figure 4, the behavior Beh 1 reads from a
variable v1 and writes it to the variable v2.

2.2	 Composition Rules

Composition rules are the relations between
objects in Model Algebra.

Control flow

It determines the execution order of behaviors
during a simulation. All predecessing behaviors
must finish and a condition be true in order for
the successor behavior to start. It is formally
expressed as:

q: b1&b2&...&bn			 (1)

This expression states that for behavior b
to execute, the condition q must be true and the
behaviors must all execute first. It is represented
graphically as a circle with edges pointing towards
it from the preceding behaviors and has an edge
toward the successor behavior. This can be seen
in Figure 5.

Blocking and non-blocking operations

Behaviors may use their ports to read or write
to/from a variable or another port. These read and
write operations may be either blocking or non-
blocking operations. We will refer to these opera-
tions as data dependencies. They are represented
as straight arrows between ports and variables.

2.3	 Transformation Rules

A model can be transformed by rearranging
and replacing objects. Model refinement is basi-
cally a well-defined sequence of transformations.
If each of these transformations is proven correct
in a formal context, then we can perform verifica-
tion by correct refinement with two given models.
Starting with a test model M, a refined (stated as
the function R()) model M’ can be defined as the
successive transformations on M:

M '= R(M) = tn (tn-1(..t1(M)...)	 (2)

Hierarchical Behavior Flattening

Since we only need the leaf level behaviors,
hierarchical behaviors can be “flattened” to reveal
its sub-behaviors. Basically there are two types of
objects that are modified in the flattening process:

Figure 5. Control Node.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica80

control dependencies and data dependencies. Con-
trol dependencies are modified because once the
hierarchical behavior has been flattened, the con-
trol dependency leading to it is directed instead to
its VSP behavior, and the VTP will take the place
of the as the predecessor in all Control Dependen-
cies that included the parent behavior. Data depen-
dencies are modified when all ports of the parent
behavior are flattened out. The data dependency is
merged with the port data dependency inside the
parent. This includes the links in all channels, ex-
tending the channel to the subbehavior.

Identity Elimination

Since the identity behavior does not perform
any computation, it can be removed from the model
after resolving data and control dependencies. Any
variables being read and written by the identity
behavior are merged, and the ports removed. The
control nodes preceding the behavior are merged
with the control nodes succeeding the identity.
This is illustrated in Figure 6. Unresolved channel
dependencies in an identity behavior prevents it
from being eliminated; channel resolution has to
be applied first before removing its ports.

Redundant Control Dependency Elimination

This rule removes unneeded control de-
pendencies. Key to this rule is the concept of
dominance of behaviors: if a behavior A always
executes at least once for every execution of
behavior B, then we can se that A is a domi-
nator of B. Now, given 3 behaviors b1, b2 and
b3, shown in Figure 7(a), since b1 dominates
b2, we know that for every execution of b3,
the other two behaviors have already executed,
hence, the control edge from b1 to b3 is unne-
cessary, so it can be eliminated. This can be
seen in Figure 7(b).

Control Relaxation

Given a model in Figure 8(a), if there is
no data dependency between behavior b1 and
behavior b2, and the control node between them
has no other port or variable dependency, then b1
and b2 can execute concurrently since the order
of their executions does not alter any variable
trace. Both behaviors would still continue on to
behavior b3, as seen in Figure 8(b).

3.	 Transaction Level Modeling

In order to accurately model TLMs, we
improved some aspects of Model Algebra and
included new transformation rules.

3.1 Channel Resolution Rule

We refined channels to be point to point
between two behaviors, and will have double
handshake semantics. These behaviors must be
either hierarchical behaviors or identity behaviors.
The channel will also no longer hold addresses,
and any data to be transferred will be read by the
identity behavior on one side and written out by
the identity behavior on the other side. It is best
illustrated in Figure 9.

Figure 6. Identity Elimination Rule.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 81

Figure 7. Redundant Control Dependency Elimination Rule.
Source: Lochi, 2013.

Figure 8. Control Relaxation Rule.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica82

3.2	 Principle of Duplication

When designing embedded systems, the de-
signers may encounter modules that slow down
the execution flow because of their slow hardware
response. In Figure 10 a), let’s say that module B
is the one with a big delay. One of the common
solutions would be to simply duplicate the module

in question (hardware IP for instance) and do a pa-
rallel execution to speed the execution, as shown in
b). Module A will forward half of its computation
to module B’ and half to B”, assuming that both
modules perform identical computation tasks. Fi-
nally, our system is shown in c), with 2 modules B’
and B” in an endless loop, performing calculations
for A and forwarding the result to C.

Figure 9: Resolution of channels into control dependencies.
Source: Lochi, 2013.

Figure 10. Principle of duplication.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 83

3.3	B ehavior Type
The principle of duplication shown in the

previous section is sound if and only if the two
behaviors running in parallel are identical. In or-
der to include this property into Model Algebra,
we introduce Behavior Type: each behavior will
have a type, and may be shown explicitly after
the behavior name, separated by a colon. Figure
11 updates the figures in c) (from Figure 10) with
the behavior type and with the proper Model Al-
gebra objects.

For two behaviors to be of the same type,
there is one underlying condition: both behaviors
have to have the same ports and these ports
have to have the same bindings to other ports or
variables. If this is not met, the two behaviors
shall be considered of different type.

•	 Their sets of successor behaviors are equal.
In other words, the execution of any of the
two behaviors is followed immediately by the
execution of one specific behavior.

3.5	 Control Node Merging

This transformation rule allows to reduce the
number of control nodes by merging two or more
nodes if:
•	 Their sets of predecessor behaviors are equal.
•	 They have the same successor behavior.

4.	 Model Algebra Data Structure

In order to be able to properly manipulate and
transform a model described in Model Algebra,
we need a suitable data structure to describe any
posible model. We now describe the Model Al-
gebra Data Structure used in our tool. Our Model
Algebra Data Structure is saved in the XML for-
mat [4] and have the extension .MAG. The set of
rules that all MAG files conform to is expressed in
a XML Schema Definition (XSD) [5]. MAG files
are composed of the following elements: BEHA-
VIOR, VARIABLE, CONDITION, CHANNEL,
LINK, PORT, CD, DD_VAR_NB_READ,	
DD_VAR_NB_WRITE, DD_PORT_NB_READ,
DD_PORT_NB_WRITE, DD_PORT_B_READ,
and DD_PORT_B_WRITE.

The root of every MAG file is a BEHAVIOR
object which contains any other objects listed
above. The BEHAVIOR object is hierarchical,
meaning that any object can only be contained in-
side a BEHAVIOR object and no other.

The graphical representation of the MAG ob-
ject tree is shown in Figure 14. In this figure, we
can see that the only other object that can be hierar-
chical is CHANNEL, which contains LINK. It des-
cribes the ports that connect both behaviors to the
channel. CD refers to Control Dependency, and has
an attribute pointing to CONDITION. This object
marks if the CD depends on a variable, port or a
boolean value. All the data dependency objects are
represented in the figure as DD: these include data
dependencies on variables and ports, blockingand
nonblocking reads and write operations.

Figure 11. Behavior type.
Source: Lochi, 2013.

3.4	B ehavior Merging

This transformation merges two behaviors if
the following conditions are met:

•	 Both behaviors are of the same type. This
implies that both behaviors have the same
bindings to the same ports and/or variables.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica84

Figure 12. Behavior Merging rule.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 85

Figure 13. Control Merging rule.
Source: Lochi, 2013.

Figure 14. MAG Object tree.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica86

5.	 TLM Verifier

We developed a tool to create, transform and
verify TLMs, named TLMVer. It is composed of:

•	 Input API: it is the interface for the MA converter
which creates a Model Algebra data structure.
It creates all the MA objects and dependencies
between them.

•	 Frontend GUI: shows the graphical
representation of the MAG file. It has an
interface to allow the user to apply any
transformation in any order to the model. It
also checks for isomorphism between two
models.

•	 Backend: it responds to the GUI and applies
all the transformation rules, and performs the
equivalency checks.

In Figure 15, we show the verification
flow using TLMVer. We would start with an
application and goes through several refinement
steps. Both applications’ TLMs are fed into the
MA Converter, which interfaces with our TLMVer
API. This creates the MA representation (MAG
file) that is the input for the TLMVer. Finally, the
transformations are performed in this step by the
tool and a isomorphism is checked at the end. If
both models are isomorphic, we can say that both
models are equivalent.

The MA Converter’s task is to parse the
TLM and make the appropiate calls to the Input
API. This module has not yet been developed,
and the models we use are created by a script
calling the API.

5.1	 Isomorphism Checker

Our tool can take two models’ MA represen-
tation and check if both graphs are isomorphic.
Isomorphism indicates syntactic equality of 2 mo-
dels and it is the strongest possible equivalence.
MA representations have a root node which will
be the Virtual Starting Point (VSP). They may or
may not have a connected Virtual Terminating
Point (VTP), and commonly has cyclic edges.

One assumption that makes the checker very
simple is the case in which a model M1 and a mo-
del M2, both share the same set of subbehaviors
with the same name. In this case, the checker al-
gorithm is shown in Algorithm 1. The checker’s
task is to mainly verify the data dependencies
between each behavior and the variables, and to
verify the dominance of each behavior to all other
behaviors (line 10). If all dominance checks are
true, and the data dependencies are equal, both
models are isomorphic.

For each variable/behavior pair, a check
operation is done to see if there exists a data

Figure 15. TLM Verifier tool flow.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 87

dependency in which the behavior reads or
writes to that variable (line 22). The function
checkOperation is shown in Algorithm 2.

6.	 System Level Refinement and
Verification Experimental
setup

The design methodology for our system is
shown in Figure 16. It starts with an executable
functional specification model of the design and

is gradually refined into a cycle accurate model
which is then forwarded into the traditional
manufacturing phase. The refinement process
is composed of several steps in which objects
in our models are modified, replaced or
eliminated. After each step, the designer ends
up with a new executable model which serves as
the base for the next refinement step. As shown
in Figure 16, cycle accurate design is not part
of our domain and will not be discussed here.

The refinement depicted in Figure 16 are:

Algorithm 1.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica88

•	 Behavior Partitioning: the behaviors are rea-
rranged to reflect the mapping of leaf beha-
viors to component behaviors.

•	 Serializing: Behaviors that must be execu-
ted with a single controller are serialized, it
converts parallel composition into sequential
compositions.

•	 Communication Scheduling: by modifying
the scheduling of bus transactions, the per-
formance of the design can be improved.

•	 Transaction Routing: Splits transaction links
into two links putting a router in between.

•	 These key refinements were described in de-
tail in [3]. In this article, we will focus on the
design optimizations depicted in Figure 17.
These optimizations can be proven for co-
rrectness using the new transformation rules
of Model Algebra.

The optimization depicted are:

•	 Pipelining: sequential behaviors are separa-
ted into different processing units which run
concurrently. Each behavior will forward
data to the next one and immediately begin

processing the next data packet. Between
each pair of behaviors a FIFO structure may
be modeled.

•	 Duplication: slow behaviors may be duplica-
ted in order to compute two or more data pac-
kets simultaneously and speed up the pipeline.

6.1	 FIFO modeling

To model communication between beha-
viors, we can use communication channels,
described above. But for several types of appli-
cations, the model of computation used is Kahn
Process Networks, were the behaviors execute
concurrently and communicate through unboun-
ded FIFOs. Our model of a FIFO can have one or
more storage variables. Shown in Figure 18 is a
1-place FIFO. The structure is based on two iden-
tity behaviors: e1 and e2. The first one performs
the double handshake channel communication
with the preceding behavior and writes out the
data into the variable. The second identity be-
havior reads the variable and pass it through the
channel to the next behavior.

Algorithm 2.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 89

Figure 16. Refinement based methodology (courtesy of [3]).
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica90

Figure 17. Optimizations.
Source: Lochi, 2013.

Figure 18. 1-place FIFO.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 91

Results of FIFO Transformation

We can use the transformation rules described
in this article to prove that a n-place FIFO can be
reduced to a 1-place FIFO. This is illustrated in
Figure 20. The initial model is a subsection of a
n-place FIFO depicting a 2-place FIFO, shown
in the upper left corner of the figure. There is a
incoming channel ch1 and an outgoing channel
ch3. The outgoing channel links with the rest of
the FIFO. The first transformation rule applied
is the Channel Resolution Rule, so channel ch2
is resolved into two new control dependencies:
identity behavior e3 goes to e1 and e2 goes to
e4. The Identity behavior e2 now writes directly
to variable v2. The result is shown in the upper
right model in Figure 20. The next rule applied
is Identity Elimination: e2 is eliminated and the
variables v1 and v2 are merged, keeping the

name v1. The other rule that was applied is the
Redundant Control Dependency Elimination:
the control dependency between vsp and e1
is eliminated. The result is shown in the lower
right model in Figure 20. The last step is to apply
again the Identity Elimination Rule to behavior
e3. The resulting model is shown in the lower left
part of the figure and it is the same as a 1-place
FIFO, proving that any FIFO can be reduced into
a 1-place FIFO applying the basic transformation
rules of MA.

Taking several FIFOs with different sizes,
we utilized our verification tool to measure
the transformation times. We built FIFOs with
sizes 1,2,3,4,5 and 10 places and applied the
transformation rules. The results are shown in
Figure 21. We can see that, as expected, the total
transformation time increases with the size of the
FIFO, but still in the order of seconds.

Figure 19. n-place FIFO.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica92

Figure 20. FIFO transformation.
Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 93

6.2 Pipeline Modeling

Pipelined architectures are a common
optimization for systems with certain types of
applications. In a pipeline, data is transferred
from one processing module to the next, while
all modules run in parallel. This increases
dramatically the throughput of the data packets,
but the overall time to process one individual
packet remains the same. It has been commonly
used in microprocessor architecture.

Design decisions

To create an optimum pipeline, the designer
must adequately partition the behaviors into

different stages. The pipeline throughput
depends directly on the slowest module, so the
optimum balance in terms of behavior speed
must be achieved while partitioning. The
pipeline optimization is illustrated in Figure
22. In this figure, we start with 4 sequential
behaviors labeled ’B1’, ’B2’, ’B3’ and ’B4’.
Their estimated delay times are 5, 10, 20 and
20. The overall delay for each packet would be
55 time units. The optimum way to create the
pipeline would be to use 3 pipeline stages, with
behaviors ’B1’ and ’B2’ together in the first
stage. This way, data packets would be processed
every 20 time units.

A simple 3 stage pipeline model is shown in
Figure 23. We use channels to communicate the
data between behaviors A, B and C.

Figure 21. FIFO Transformation times.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica94

Figure 22. Pipeline optimization.

Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 95

Verification results

In Figure 24 we can see the transformation
steps to this 3 stage pipelined architecture.
Starting in the upper left corner, we can see the
model after applying the Flattening rule to the
behaviors shown in Figure 23. The next step is
to apply the Channel Resolution rule, converting
channels ch1 and ch2 into control dependencies.
The resulting model is shown in the upper
right part of the figure. We can see now that
behaviors e2 and e4 write directly to variables
v2 and v3, and both now execute behaviors e1
and e3 afterwards. Next, the Redundant Control
Dependency Elimination rule is applied and the
control dependencies between vsp and e1 and
e3 are deleted. This is shown in the lower right
part of the figure. The last step is to apply the
Identity Elimination rule to behaviors e1, e2, e3
and e4. We can see that the model shown in the
lower left part of the figure is the representation
of a serialized model with behaviors A, B and

C executing one after another, using the data
written by the previous stage.

In order to test our transformation rules, we
modeled a JPEG Encoder using Model Algebra’s
representation. The JPEG encoder is composed
of 5 main functions, as shown in Figure 25. They
are named: ReadBmp, DCT, Quantize, Zigzag
and Huff. They run sequentially in a loop for 180
times, taking a .bmp file as the input and writing
out a .jpeg file. Each function can be mapped
into a single core or with another function. We
created 4 different models, all pipelined, with
different number of stages. All were synthesized
and implemented into a Xilinx Virtex 4 FPGA
board. The mappings for each of the platforms is
shown in Figure 26. Each platform is composed
of 2 or more MicroBlaze softcore embedded
processors, one shared bus (OPB protocol) and
one transducer serving as a shared memory. The
MicroBlazes will exchange data by storing it in
the transducer internal FIFO and reading it out
from there.

Figure 23. Pipeline Modeling.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica96

Figure 24. Pipeline Transformations

Source: Lochi, 2013.

YU LO: Verification of transaction level models of... 97

Figure 25. JPEG Encoder Application.

Figure 26. Pipelined JPEG platforms.
Source: Lochi, 2013.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica98

Figure 27. Execution time in a FPGA board.

Figure 28. Transformation time in a pipeline architecture.

Source: Lochi, 2013.

As shown in Figure 27, the execution time de-
creases as we increase the number of pipeline stages.

In order to check for equivalence of
these different models, we created Model
Algebra representations of all 4 and applied the
transformations, and checked for isomorphism
with the non-pipelined model. The transformation
time for these 4 models is shown in Figure 28,

and the number and type of transformation rules
applied is shown in Figure 29.

As we can see in Figure 28, the transformation
time for each of the platforms is in the order of
seconds, and scales linearly. In Figure 29, we can
observe that the number of transformations also
increases linearly with the number of stages, and
all transformation rules applied increase with it.

YU LO: Verification of transaction level models of... 99

Figure 29. Transformation rules applied to a pipeline architecture.
Source: Lochi, 2013.

7.	 Conclusions

In this article we presented a summary of
the system level verification challenges and
the Model Algebra formalism. We described
new transformation rules for Model Algebra:
channel resolution, control node merging and
behavior merging. Building upon these new
transformation rules, we presented useful system
level optimizations, namely pipelining, use of
FIFO channels and behavior duplication.

We showed how we could model a N-place
FIFO and a pipeline, and used Model Algebra’s
transformation rules to prove their correctness.

We defined a data structure to describe models
written in Model Algebra, named MAG files. This
data structure allowed the description, graphical
representation and storage of intermediate and
final structures of these models in MA.

Using Model Algebra’s composition and
transformation rules, we developed a software
tool that can take models written in MA (as
MAG files), represent them graphically and
see transformation rules applied to them. By
modeling a multimedia application such as a
JPEG encoder into a pipelined architecture, we
could prove that Model Algebra’s representation
of these optimizations on these platforms could
be successfully transformed and compared with
the non pipelined model. The transformation
time was fast (in the order of seconds) and the
number of transformation rules increased linearly
with the number of pipeline stages.

The implementation of the software tool
gives us more confidence in refinement results,
more ability to explore different sequences of
transformations and the means to develop correct
refinement and optimization tools.

Ingeniería 23 (2): 75-100, ISSN: 2215-2652; 2013. San José, Costa Rica100

8.	 Recommendations and future
work

There is need to develop more transformation
rules in order to check for isomorphism in
more dissimilar models. As the number of
transformation rule increases, the verifier tool
will be more versatile and more complex designs
will be formally verifiable. This will reduce the
design and verification time, improving time-to-
market parameters and increasing productivity.

References

Samar Abdi and Daniel Gajski. Verification
of system level model transformations.
Internation Journal of Parallel Programming,
34(1):29-59, February 2006

Samar Abdi and Daniel Gajski. A formalism for
functionality system level transformations.
In Proceedings of the Asia Pacific Design Au-
tomation Conference, pages 139-144, 2005

Samar Abdi. Functional Verification of System
Level Model Refinements. PhD Thesis,
University of California, Irvine, 2005.

Xml. http://www.w3.org/XML
Xml Schema. http://www.w3.org/XML/Schema

About the author

Lucky Lochi Yu Lo.
Universidad de Costa Rica, Escuela de Ingeniería
Eléctrica. Ph. D. en Ingeniería Eléctrica.
Profesor del Departamento de Automática y
Digitales.
Correo electrónico: lochiyu@eie.ucr.ac.cr

