VALERIO, VARGAS Y BARBOZA: Modelling Matambú bean (Phaseolus vulgaris) hydration kinetics...
76
max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Ha).
Journal of Food Engineering, 56(2–3), 249–254. https://doi.org/10.1016/S0260-8774(02)00262-5
Hernández, J. C., Chaves, N. F., Araya, R. and Beebe, S. (2018). “Diquís”, variedad de frijol común rojo
brillante. Agronomía Costarricense, 42(1). https://doi.org/10.15517/rac.v42i1.32200
Kaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J. and Mbofung, C. M. F. (2008).
Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bam-
bara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86(1), 91–99. https://
doi.org/10.1016/j.jfoodeng.2007.09.014
Kashiri, M., Kashaninejad, M. and Aghajani, N. (2010). Modeling water absorption of sorghum during
soaking. Latin American Applied Research, 40(4), 383–388. http://www.scielo.org.ar/scielo.
php?script=sci_abstract&pid=S0327-07932010000400014
Kinyanjui, P. K., Njoroge, D. M., Makokha, A. O., Christiaens, S., Sila, D. N., and Hendrickx, M. (2017).
Quantifying the Effects of Postharvest Storage and Soaking Pretreatments on the Cooking Quality of
Common Beans ( Phaseolus vulgaris ). Journal of Food Processing and Preservation, 41(4), 30–36.
https://doi.org/10.1111/jfpp.13036
Oliveira, A. L., Colnaghi, B. G., Silva, E. Z. da, Gouvêa, I. R., Vieira, R. L., and Augusto, P. E. D. (2013).
Modelling the effect of temperature on the hydration kinetic of Adzuki beans (Vigna angularis). Jour-
nal of Food Engineering, 118(4), 417–420. https://doi.org/10.1016/j.jfoodeng.2013.04.034
Peleg, M. (1988). An Empirical Model for the Description of Moisture Sorption Curves. Journal of Food
Science, 53(4), 1216–1217. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
Quicazán, M., Caicedo, L. and Cuenca, M. (2012). Applying Peleg’s equation to modelling the kinetics
of solid hydration and migration during soybean soaking. Ingeniería e Investigación, 32(3), 53–57.
http://www.scielo.org.co/scielo.php?pid=S0120-56092012000300011&script=sci_arttext&tlng=es
Rao, I. (2014). Advances in Improving Adaptation of Common Bean and Brachiaria Forage Grasses to
Abiotic Stresses in the Tropics. In Handbook of Plant and Crop Physiology (3rd ed., pp. 847–890).
Boca Raton, Florida: CRC Press. https://doi.org/10.1201/b16675-49
Roussel, J., Geiger, F., Fischbach, A., Jahnke, S. and Scharr, H. (2016). 3D Surface Reconstruction of Plant
Seeds by Volume Carving: Performance and Accuracies. Frontiers in Plant Science, 7, 745. https://
doi.org/10.3389/fpls.2016.00745
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image
analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Shafaei, S. M., Masoumi, A. A. and Roshan, H. (2016). Analysis of water absorption of bean and chickpea
during soaking using Peleg model. Journal of the Saudi Society of Agricultural Sciences, 15(2), 135–
144. https://doi.org/10.1016/j.jssas.2014.08.003
Shaur Rahman, M. (2005). Mass-Volume-Area-Related Properties of Foods. In Engineering Properties
of Foods (3rd ed.). Boca Raton, Florida: CRC Press. https://doi.org/10.1201/9781420028805.ch1
Walker, C. K. and Panozzo, J. F. (2012). Measuring volume and density of a barley grain using ellip-
soid approximation from a 2-D digital image. Journal of Cereal Science, 55(1), 61–68. https://doi.
org/10.1016/j.jcs.2011.10.004
Zanella-Díaz, E., Mújica-Paz, H., Soto-Caballero, M. C., Welti-Chanes, J., and Valdez-Fragoso, A. (2014).
Quick hydration of tepary (Phaseolus acutifolius A. Gray) and pinto beans (Phaseolus vulgaris L.)
driven by pressure gradients. LWT - Food Science and Technology, 59(2), 800–805. https://doi.
org/10.1016/j.lwt.2014.05.042