Ingeniería 31(2): 80-97, Julio-diciembre, 2021. ISSN: 2215-2652. San José, Costa Rica DOI 10.15517/ri.v31i2.45018
67
[9] S. Banerjee, B.P. Carlin, A.E. Gelfand, Hierarchical modeling and analysis for spatial data.
Chapman & Hall/CRC, Florida, 2004.
[10] M. Garrett, and B. Taylor, “Reconsidering social equity in public transit”, Berkeley Planning Jour-
nal, 13.1, pp. 6-27, 1999.
[11] C. Nuworsoo, A. Golub and E. Deakin, “Analyzing equity impacts of transit fare changes: Case
study of Alameda–Contra Costa Transit, California”, Evaluation and Program Planning, vol. 32, no
4, pp. 360-368, 2009. https://doi.org/10.1016/j.evalprogplan.2009.06.009.
[12] R. Cervero, “Flat versus differentiated transit pricing: what’s a fair fare?”, Transportation, vol. 10,
no 3, pp. 211-232, 1981..
[13] J. H. Ling, “Transit fare differentials: A theoretical analysis”, Journal of advanced transportation,
vol. 32, no 3, pp. 297-314, 1998. http://dx.doi.org/10.1002/atr.5670320304.
[14] B.Z. Liu, Y.E. Ge, K. Cao, X Jiang et al., “Optimizing a desirable fare structure for a bus-subway
corridor”, PLoS ONE, vol 12, no 10, 2017. e0184815.
[15] C. Tang, A.A. Ceder, and Y.E. Ge, “Integrated optimization of bus line fare and operation-
al strategies using elastic demand”, Journal of Advanced Transportation, 2017. https://doi.
org/10.1155/2017/7058789
[16] M. Karlaftis, and P. McCarthy, “Cost structures of public transit systems: a panel data analysis”,
Transportation Research Part E: Logistics and Transportation Review, vol. 38, no 1, pp. 1-18,
2002.. https://doi.org/10.1016/S1366-5545(01)00006-0.
[17] N.T. Longford, “Logistic regression with random coefcients”, Computational Statistics & Data
Analysis, vol. 17, no 1, pp. 1-15, 1994. https://doi.org/10.1016/0167-9473(92)00062-V.
[18] R. Cervero, and C. D. Kang. “Bus rapid transit impacts on land uses and land values in Seoul,
Korea” Transport Policy, vol. 18, no 1, pp. 102-116, 2011. https://doi.org/10.1016/j.tran-
pol.2010.06.005.
[19] N. Yavuz, E. Welch and P. Sriraj, “Individual and neighborhood determinants of perceptions of bus
and train safety in Chicago, Illinois: Application of hierarchical linear modeling”, Transportation
Research Record: Journal of the Transportation Research Board, no 2034, pp. 19-26, 2007. https://
doi.org/10.3141/2034-03.
[20] A. Paez, and R. G. Mercado, “Mobility of Canadian Elderly: Multilevel Analysis of Distance Trav-
eled in the Hamilton Census Metropolitan Area, Ontario, Canada”. Presented at 86th Annual Meet-
ing of the Transportation Research Board, Washington, D.C., 2007.
[21] C. Wang, M. Quddus, M. Enoch, T. Ryley and L. Davison, “Multilevel modelling of Demand Re-
sponsive Transport (DRT) trips in Greater Manchester based on area-wide socio-economic data”,
Transportation, vol. 41, no 3, pp. 589-610, 2014.. https://doi.org/10.1007/s11116-013-9506-1.
[22] T.Y. Ma, and J. P. Lebacque. “Dynamic system optimal routing in multimodal transit network.”
Transportation Research Record: Journal of the Transportation Research Board, no. 2351, 2013,
pp. 76-84, 2013.. https://doi.org/10.3141/2351-09.
[23] N.M. Laird, and J. H. Ware, “Random-effects models for longitudinal data”, Biometrics, pp. 963-
974, 1982. https://doi.org/10.2307/2529876.