SOLANO, CRUZ, RAMOS, SOLÍS, NÚÑEZ Y PÉREZ: Metodología FMECA para un autogenerador...
124
REFERENCIAS
[1] J. Ribrant y L. M. Bertling, “Survey of failures in wind power systems with focus on Swedish wind
power plants during 1997-2005”, IEEE Transactions on Energy Conversion, vol. 22, no. 1, pp. 167-
173, marzo, 2007. DOI: 10.1109/TEC.2006.889614
[2] J. M. Gonzáles, L. Amendola y T. Depool, “Modelo de criticidad operacional en generadores de
parques eólicos”, presentado en XII Congreso Internacional de Ingeniería de Proyectos, Zaragoza,
España, 2008, pp. 2331-2340.
[3] M. N. Scheu, L. Tremps, U. Smolka, A. Kolios y F. Brennan, “A systematic Failure Mode Eects
and Criticality Analysis for oshore wind turbine systems towards integrated condition based
maintenance strategies”, Ocean Engineering, vol. 176, pp. 118-133, marzo, 2019. DOI: https://doi.
org/10.1016/j.oceaneng.2019.02.048
[4] H. Arabian-Hoseynabadi, H. Oraee y P.J. Tavner, “Failure Modes and Eects Analysis (FMEA) for
wind turbines”, International Journal of Electrical Power & Energy Systems, vol. 32, no. 7, pp.
817-824, septiembre, 2010. DOI: https://doi.org/10.1016/j.ijepes.2010.01.019.
[5] S. Kahrobaee y S. Asgarpoor. “Risk-based failure mode and eect analysis for wind turbines (rb-
fmea)”, presentado en 2011 North American Power Symposium, Boston, Estados Unidos, agosto,
2011, pp. 1–7.
[6] M. Gauravkumar Bharatbhai, “Failure Mode and Eect Analysis of Repower 5M Wind Turbine”,
International Journal of Advance Research in Engineering, Science & Technology, vol. 2, no. 5, pp.
1-8, mayo, 2015.
[7] J. Kang, L. Sun, H. Sun y C. Wu, “Risk assessment of oating oshore wind turbine based on
correlation-FMEA”, Ocean Engineering, vol. 129, pp. 382-388, enero, 2017. DOI: https://doi.
org/10.1016/j.oceaneng.2016.11.048.
[8] N. V. Zubova y A. A. Achitaev, “Application of Neuro-Fuzzy Control Systems for Increasing the
Energy Eciency of Wind Turbines”, presentado en XIV International Scientic-Technical Confer-
ence on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Rusia, oc-
tubre 2-6, 2018, pp. 518-521, DOI: https://doi.org/10.1109/APEIE.2018.8546210.
[9] M. F. Ahmed Fayeem, A. H. Galib y P. Saha, “Micro Wind Turbine as an Alternative Power Source
in Bangladesh”, presentado en 2019 International Conference on Sustainable Technologies for In-
dustry 4.0 (STI), Dhaka, Bangladesh, diciembre 24-25, 2019, pp. 1-4, DOI: https://doi.org/10.1109/
STI47673.2019.9067980.
[10] Y. Li, Y. Zheng, N. Zhu y F. Zhao, “Wind Turbine Kinetic Energy Accumulation and Release Regu-
lation for Wind Farm Optimization”, presentado en 2019 4th International Conference on Mechani-
cal, Control and Computer Engineering (ICMCCE), Hohhot, China, Octubre 24-26, 2019, pp. 231-
2314, DOI: https://doi.org/10.1109/ICMCCE48743.2019.00060
[11] S. Pourmohammad y A. Fekih. “Fault tolerant control of wind turbine system – a review”, presen-
tado en 2011 IEEE Green Technologies Conference (IEEE-Green), Baton Rouge, Estados Unidos,
abril 14-15, 2011, pp. 1-6, DOI: https://doi.org/10.1109/GREEN.2011.5754880
[12] F. P. García y M. Papaelias, “An overview of wind turbine maintenance management”, en Nom-De-
structive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets, M.
Papaelias, F.P. García and A. Karyotakis, Ed., Oxford, UK: Butterworth-Heinemann, 2020, capítulo
3, pp. 31-47. [en línea]. Disponible en https://doi.org/10.1016/B978-0-08-101094-5.00003-4