COTO Y ROJAS: Comparativa multi e hiperespectral del pasto Cynodon nlemfuensis bajo condiciones tropicales...
16
[13] M. Guerini Filho, T. M. Kuplich, y F. L. F. De Quadros, “Estimating natural grassland biomass by
vegetation indices using Sentinel 2 remote sensing data”, Int. J. Remote Sens., vol. 41, núm. 8, pp.
2861–2876, abr. 2020, doi: 10.1080/01431161.2019.1697004.
[14] E. Ben-dor et al., “Remote Sensing of Environment Using Imaging Spectroscopy to study soil prop-
erties”, Remote Sens. Environ., vol. 113, pp. S38–S55, 2009, doi: 10.1016/j.rse.2008.09.019.
[15] T. Jarmer, M. Vohland, H. Lilienthal, y E. Schnug, “Estimation of Some Chemical Properties of an
Agricultural Soil by Spectroradiometric Measurements”, Pedosph. An Int. J., vol. 18, núm. 2, pp.
163–170, 2008, doi: https://doi.org/10.1016/S1002-0160(08)60004-1.
[16] I. Melendez-Pastor, J. Navarro-pedreño, I. Gómez, y M. Koch, “Identifying optimal spectral bands to
assess soil properties with VNIR radiometry in semi-arid soils”, Geoderma, vol. 147, pp. 126–132,
2008, doi: 10.1016/j.geoderma.2008.08.004.
[17] R. E. N. Hong-yan, Z. Da-fang, A. N. Singh, P. A. N. Jian-jun, y Q. I. U. Dong-sheng, “Estimation
of As and Cu Contamination in Agricultural Soils Around a Mining Area by Reectance Spectros-
copy : A Case Study”, Pedosph. An Int. J., vol. 19, núm. 6, pp. 719–726, 2009, doi: 10.1016/S1002-
0160(09)60167-3.
[18] N. Bao, L. Wu, K. Yang, y W. Zhou, “Assessing soil organic matter of reclaimed soil from a large
surface coal mine using a eld spectroradiometer in laboratory”, Geoderma, núm. 288, pp. 47–55,
2017, doi: https://doi.org/10.1016/j.geoderma.2016.10.033.
[19] S. N. Kulkarni y R. R. Deshmukh, “Monitoring Carbon , Nitrogen , Phosphor and Water Contents of
Agricultural Soil by Reectance Spectroscopy using ASD Fieldspec Spectroradiometer”, Int. J. Eng.
Sci. Comput., vol. 6, núm. 11, pp. 3429–3433, 2016.
[20] I. F. S. Gazala et al., “Spectral reectance pattern in soybean for assessing yellow mosaic disease”,
Indian J. Virol., vol. 24, núm. 2, pp. 242–249, sep. 2013, doi: 10.1007/s13337-013-0161-0.
[21] M. L. Gnyp et al., “Hyperspectral Analysis of Rice Phenological Stages on Northeast China”, ISPRS
Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. I–7, pp. 77–82, jul. 2012, doi: 10.5194/isprsan-
nals-I-7-77-2012.
[22] R. R. Pullanagari, I. J. Yule, M. P. Tuohy, M. J. Hedley, R. A. Dynes, y W. M. King, “In-eld hyper-
spectral proximal sensing for estimating quality parameters of mixed pasture”, Precis. Agric., vol. 13,
núm. 3, pp. 351–369, jun. 2012, doi: 10.1007/s11119-011-9251-4.
[23] J. Elizondo Salazar, “Pasto Estrella Africana: Características Nutricionales y Aspectos de Manejo”,
Vent. Leche., vol. 3, núm. 10, pp. 26–27, 2008.
[24] CIA, IICA, INTA, y Asociacion Costarricense de la Ciencia del Suelo, “Geoportal de Suelos de Costa
Rica”, Suelos.cr. http://www.suelos.cr (accesado en Ene. 25, 2020).
[25] R. McCoy M, “Sampling in the Field”, en Field Methods in Remote Sensing, New York, NY: The
Guilford Press, 2005, pp. 12–40.
[26] A. F. . Goetz, “Making Accurate Field Spectral Reectance Measurements”, Malvern Panalytical.
https://www.materials-talks.com/wp-content/uploads/2018/01/Making-Accurate-Field-Spectral-Re-
ectance-Measurements-LR.pdf (accesado en Mar. 06, 2021).
[27] I. Herrmann, A. Pimstein, A. Karnieli, Y. Cohen, V. Alchanatis, y D. J. Bonl, “LAI assessment of
wheat and potato crops by VENμS and Sentinel-2 bands”, Remote Sens. Environ., vol. 115, núm. 8,
pp. 2141–2151, ago. 2011, doi: 10.1016/j.rse.2011.04.018.