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Abstract
Fuel demand during the last 50 years in Costa Rica has increased constantly. Do the price of fuels 

and Gross National Income contribute to explain these trends? This paper explores the existence of causal 
relations between economic growth, fuel price, and transport demand (represented by fuel consumption 
and registered vehicles). Vector autoregression (VAR) models were estimated with a time series of data of 
1965-2019. Causal relations were found between fuel demand and income, but not with registered vehicles. 
The effect of price on demand and income were documented, which is important for policy formulation (in 
particular, possible taxation of fuel demand as a carbon mitigation strategy).
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Resumen
La demanda de combustible durante los últimos 50 años en Costa Rica se incrementó constantemente. 

¿Cuánto contribuyen el ingreso nacional bruto y el precio de los combustibles a explicar estas tendencias? 
Este artículo explora la existencia de relaciones causales entre crecimiento económico, precio de combustibles 
y demanda de transporte (representada por el consumo de gasolina y diésel y por la flota vehicular). Se 
estimaron modelos de vectores autorregresivos para series de tiempo correspondientes a 1965-2019. Se 
encontraron relaciones causales entre demanda de combustibles e ingresos, pero no con flota vehicular. Se 
documentaron los efectos del precio sobre la demanda e ingreso, lo cual es muy relevante para la formulación 
de políticas públicas (en particular, posibles impuestos a los combustibles como estrategia de mitigación de 
emisiones de carbono).
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Consumo de combustibles, precio de combustibles, ingreso, flota vehicular, modelo de vectores autorregre-
sivos, causalidad de Granger.
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1.	 INTRODUCTION

The microeconomic analysis of fuel demand has long been considered a subject of importance 
both because of its effects on economic development and due to its environmental impact [1]. 
Along this line of reasoning, fundamental research questions have been related to the price 
effect on fuel demand and the causal relations between energy demand and economic output, 
particularly any indirect effects of energy price constraints on output. Similar approaches have 
been adopted to the impacts of infrastructure investment and transport costs on development [2].

Fuel demand in Costa Rica has been regularly studied over the last three decades. Generally, 
previous research can be classified into one of two categories: academic research examining 
price and income effects, motivated by the environmental impacts of fuel consumption [3], [4], 
[5], and government analysis to inform energy sector planning [6], [7] —of strategic importance, 
given the State control of fuel imports and electricity production in Costa Rica. Most previous 
research has resulted in elasticity estimates derived from aggregate demand using time series 
econometrics [3], [4], [6], [7]. Blackman et al. [5] are an exception: they used household survey 
data to conclude the tax on gasoline is progressive and the tax on diesel, regressive in Costa 
Rica. More recently, Godínez-Zamora et al. [8] generated scenarios for deep decarbonization 
in Costa Rica for the energy and transport sector, based on stakeholder input, which they 
subsequently simulated with the OSeMOSYS model; they found out greenhouse gas emissions 
could be reduced by up to 87 % of the baseline by a combination of modal shift, technology, 
and demand management.

Elasticities were estimated by Singh and Vargas [3] for gasoline (-0.33 of price and 0.47 
of income) and for diesel (-0,20 of price and 0,33 of income) demand during 1972-1992, after 
controlling for vehicle ownership. Adamson [4] used a time series of 1957-1996 to estimate, 
for gasoline and diesel, elasticities of price (-0.26 and -0.18, respectively) and income (1.41 
and 0.88, respectively). Neither Singh and Vargas [3] nor Adamson [4] found significant cross 
elasticities between fuel prices. Leiva [7], in his most recent energy elasticity estimates for Costa 
Rica, used data of 1984-2007 to calculate price and income elasticities for diesel demand (-0.14 
and 0.97, respectively) and premium gasoline (-1.03 and 1.29, respectively); regular gasoline 
estimates only included income elasticity (1.05) because the price elasticity was found to be 
positive, likely because of substitution of premium gasoline during high price periods.

This paper reports a time series analysis of fuel demand, Gross National Income (GNI) per 
capita (as a proxy variable for household income), and gasoline price. The stationarity of all-
time series was explored, followed by cointegration of all series with a common integration 
order. Granger causality was determined. A vector autoregression (VAR) model is reported to 
understand the magnitude, sign, and significance of determinants.

The analysis completed in this paper extends previous work on aggregate fuel demand in 
two directions. Firstly, it makes use of longer time series of fuel demand (for the 1965-2019 
period, encompassing 55 years), this allows for more rigorous modeling of serial correlation 
than previous work [3], [4], [7]. Secondly, it applies a VAR, which allows for endogenizing all 
variables. In particular, the developed model extends previous work by considering income as 
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potentially endogenous –unlike models reported in [3], [4], [7], all of which assumed exogeneity 
of price, income, and vehicle ownership.

2. 	 METHODOLOGY

2.1.	Data on gasoline demand and price, vehicle ownership, and income in Costa Rica, 
1965-2019

Following previous work and, more generally, the literature on the relation between transport 
demand and income (e.g. [9], [10]), a series of equations were proposed to explain the relationship 
between transport activity (fuel demand and vehicle ownership), fuel price (which is also a good 
proxy for direct transport costs), and income, as represented by Gross National Income per capita:

 	 (1)

 	 (2)

 	 (3)

 	 (4)

with QTt the yearly fuel demand per capita (gasoline or diesel), Fleett the number of registered 
vehicles per capita, Pt the fuel price per liter, and INDt the Gross National Income per capita; 
further, r is the optimal amount of lags (selected to maximize a set of information criteria), 
and μi,t the random error term. The model formed by this set of equations was estimated for 
annual data of Costa Rica, 1965-2019.1 Gasoline price and Gross National Income per capita 
are expressed in real terms. Models were estimated separately for gasoline and diesel. Fleett 
was defined by the number of cars to model gasoline demand, as this is the fuel mostly used by 
private vehicles; for diesel demand, the sum of trucks and buses was used due to their role in 
consuming most diesel fuel for transport in Costa Rica (data on the number of vehicles per fuel 
is not available in national statistics, requiring the use of these proxy variables). All data series 
were transformed into natural logarithms.

TABLE I

DESCRIPTIVE STATISTICS OF ANALYZED TIME SERIES2

Variable Mean Standard 
deviation Minimum Maximum

Gasoline demand per capita [m3 per person] 141,9 68,8 54,0 266,4
Diesel demand per capita [m3 per person] 193,9 50,7 93,9 285,9
Registered cars per capita [vehicles per 1000 persons] 78,2 54,0 15,1 193,8
Registered trucks and buses per capita [vehicles per 1000 persons] 32,7 31,1 8,1 51,0
Gasoline price [colones/litre] 617,3 200,0 324,0 1111,1
Diesel price [colones/litre] 439,5 206,5 125,6 880,9
Gross National Income per capita [USD$ per person] 5645 1914 3023,0 9557,0

1	 Fuel demand data were compiled by RECOPE; price data come from statistical compilations of the Dirección Sectorial de Energía, MINAE; gross 
national income and international oil prices were taken from World Bank data; regisered vehicle figures are published annually by the MOPT.
2	 Real CRC₡, 2020=100; real USD$, 2010=100.
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Fig. 1. Trends of fuel demand per capita, total registered vehicles per capita, fuel price, and Gross 
National Income per capita (1965-2019).

Based on the literature review, one may expect: (a) Gross National Income per capita and 
fuel demand per capita to be caused (in the sense of Granger) by other variables, (b) price to 
be exogenous, i.e., not caused by other variables, (c) price should be a negative determinant of 
both fuel demand and Gross National Income per capita, and (d) Gross National Income per 
capita to be a positive determinant of gasoline demand.

Descriptive statistics and trends of the time series are reported in TABLE I and Fig. 1. 
Fuel demand, for both gasoline and diesel, shows an overall increasing trend with fluctuations. 
Dispersion in the data is greater for gasoline demand (a coefficient of variation of 0.48) than for 
diesel (coefficient of variation of 0.26). Similarly, the ratio of maximum to minimum values is 
greater for gasoline demand (nearly five) than for diesel (three). Two other time series show an 
overall increasing trend but with smoother fluctuations: Gross National Income (which clearly 
display a dip in 1980, a year of sharp economic crisis in Central America) and registered trucks 
and buses; the latter exhibits a large dispersion (a coefficient of variation of 0.95) for trucks and 
buses, there is in Fig. 1 a relatively smooth increase from 1965 until the early 2000s, after which 
there is a decrease followed by an increase. On the contrary, the number of cars per capita shows 
a smooth increasing trend, with relatively large dispersion (coefficient of variation of 0.69) and 
a remarkable growth of over ten times over the 1965-2019 period.

The most likely exogenous time series, those of price, show larger fluctuations than other 
variables —and indeed one could argue they do not exhibit the increasing trend of fuel demand, 
registered vehicles per capita, and Gross National Income per capita. These fluctuations coincide 
with, and likely respond to, the mean price of oil in the international markets (Fig. 1). Additionally, 
it is also apparent diesel prices have been larger than the mean towards the end of the study 
period, specifically after 2008 when the subsidy to diesel price (in the form of a large price 
differential with gasoline) was substantially reduced. This also explains why the dispersion in 
the diesel price data is larger (coefficient of variation of 0.47) than in the gasoline price data 
(coefficient of variation of 0.32), albeit both are similar to each other and less than dispersion 
in international oil prices (coefficient of variation of 0.68).
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2.2.	Econometric strategy

The quantitative model exploring the endogeneity of the time series, proposed in subsection 
A, was developed in two stages. First, Granger causality between the time series was explored; 
second, the VAR model on first differences was estimated and discussed.

Granger causality is based on the transmission of information: in the sense of Granger, a 
time series, yt, is said to be caused by another time series, xt; if yt can be better predicted by 
considering the past of both yt and xt rather than only the past of yt [11]. Formally, consider:

 	 (5)

 	 (6)

The hypothesis test H0: b1 = b2 = … = br = 0 vs. HA “not H0”, tests if xt does not cause yt (in 
the sense of Granger); similarly, the hypothesis test H0: d1 = d2 = … = dr = 0 vs. HA “not H0” tests 
if yt does not cause xt. Rejecting the null hypothesis implies the existence of Granger causality.

When time series have integration orders greater than 0, conventional Granger causality 
tests may present problems due to the inapplicability of conventional asymptotic theory [12]. 
As noted by Todaro and Yamamoto [12], VAR models can be generated for known orders of 
integration or cointegration rank; however, (a) tests to determine their properties are limited 
when data have small samples and (b) often, as in the present paper, interest is not on forecasting 
but rather on the relations between variables themselves. Todaro and Yamamoto [12] suggested 
Granger causality should be tested on the levels of a VAR, regardless of integration order, but 
to control for the bias introduced by the use of levels with a greater number of lags: specifically, 
they proposed to determine the maximum integration order, I(k), of all time series in the model 
and to increase the amount of lags in the VAR by k. These results would be used to perform the 
Granger causality test; however, the k additional lags would not be included in the test itself.

Thus, the Granger causality tests applied to the set of time series described in subsection A 
were developed as follows: (1) the augmented Dicky-Fuller test was used to test for unit roots 
in each time series, from which their order of integration, I(k), was determined (these results are 
summarized in TABLE II); (2) the optimal lag, ro, to maximize a set of four information criteria 
was selected for a VAR model on the levels of all time series; (3) the VAR model was estimated 
with (ro+k) lags, and (4) a Wald test was performed considering only the coefficients of the first 
ro lags (i.e., with [(v-1)·ro]  degrees of freedom, with v the number of variables in the model), 
to determine Granger causality (see TABLE III). As potential verification of Granger causality, 
cointegration between the data series was explored (TABLE IV), because cointegration implies 
causality, although the absence of cointegration does not necessarily reject it.

To further explore the causal determinants, a VAR model on differences to make the data 
stationary was reported in TABLE V. From it, the sign, significance, and magnitude of the 
relations between variables were explored.
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3.	 RESULTS AND DISCUSSION

The development of dynamic time series models must begin by a characterization of the 
properties of the time series themselves, the most basic of which is their integration order. TABLE 
II summarizes the results of the augmented Dickey-Fuller tests, which are used to determine the 
existence of unit roots in the data.

TABLE II

AUGMENTED DICKEY-FULLER TEST STATISTICS3

Variable
Level First difference

Trend Drift Trend Drift
Gasoline demand per capita -1.770 -0.778 -4.309* -4.354*
Diesel demand per capita -2.819 -1.914 -5.121* -5.137*
Registered cars per capita -2.357 -1.191 -6.098* -5.987*
Registered trucks and buses per capita -1.976 -2.476 -3.453+ -3.116+

Gasoline price -2.292 -2.258 -5.094* -5.069*
Diesel price -2.035 -1.822 -4.562* -4.571*
Gross National Income per capita -2.402 -0.569 -5.138* -5.190*

* p < 0.01, + p < 0.05

The results from TABLE II clearly show (a) log-transformed levels of the variables considered 
are not stationary and (b) they are of integration order 1, i.e., their first difference is stationary 
(the weakest ADF test statistic corresponds to the trucks and buses time series, but it is still 
significant with p<0.05). On unit root testing, see Lütkepohl [13].

TABLE III was estimated using the Toda and Yamamoto [12] approach to Granger causality 
testing, i.e., estimating a VAR model on the levels of time series (despite the levels not being 
stationary per the results of TABLE II), and adding as many lags as the maximum order of 
integration of all-time series involved (in the present case, one additional lag, as all-time series 
were found to be of order 1). To estimate this VAR model on the levels, the number of lags 
was chosen by (1) maximizing a set of information criteria (which suggested 1 lag for both the 
gasoline and diesel models), (2) verifying the both models correspond to stable VAR processes, 
(3) revising if a greater number of lags might mitigate serial correlation in the error terms 
(specifically for the diesel model, serial correlation problems in the error term persists with 1 
lag but increasing the number of lags exacerbates the problem). It is important to note that the 
VAR model for diesel demand excludes the number of registered vehicles (trucks and buses) 
because, regardless of the number of lags selected, the resulting models were not stable.

As can be seen in TABLE III, both gasoline and diesel demand are Granger caused by other 
time series, as well as Gross National Income per capita (in both models). Similarly, there is no 
causal effect on price, neither for gasoline nor for diesel, which is consistent with the relation 
of price with the international oil prices (see Fig. 1). In general, the hypothesized relations 
between income (Gross National Income per capita), fuel price, and fuel demand are supported 
by the model. However, it is noteworthy that the variable cars per capita is not caused by other 

3	 All variables expressed as natural logarithms.



 PÉREZ:  Understanding the Determinants of Fuel Demand in Costa Rica, 1965-2019...28

potential determinants, in particular by the income proxy variable, as mode choice has been 
linked to household income (e.g. in origin/destination travel surveys, [14]).

TABLE III

GRANGER CAUSALITY MODELS4

Dependent variable 
(effect) Determinants (causes) X2 (d.f.) Prob.

Gasoline model
Gasoline demand per 
capita

Registered cars per capita, gasoline price, Gross 
National Income per capita 36.155 (3)* <0,001

Registered cars per 
capita

Gasoline demand per capita, gasoline price, 
Gross National Income per capita 2.072 (3) 0.558

Gasoline price Gasoline demand per capita, registered cars per 
capita, Gross National Income per capita 1.521 (3) 0.677

Gross National 
Income per capita

Gasoline demand per capita, registered cars per 
capita, gasoline price 10.993 (3) + 0.012

Diesel model
Diesel demand per 
capita

Diesel price per capita, Gross National Income 
per capita 7.932 (2) + 0.019

Diesel price Diesel demand per capita, Gross National 
Income per capita 2.016 (2) 0.365

Gross National 
Income per capita Diesel demand per capita, diesel price 10.994 (2)* 0.004

* p < 0.01, + p < 0.05.

A combination of nonstationary series may be said to be stationary in which case they are 
called cointegrated and they share a common stochastic trend. Cointegration is evidence of Granger 
causality. The stationary linear combination may be interpreted as a long-run equilibrium [9]. 
Cointegration, in sum, is an interesting property to explore if present in the data. To detect the 
existence of cointegration in the time series being analyzed, the Johansen cointegration test was 
performed (see Lütkepohl [13]). The results are reported in TABLE III. The Johansen test for 
cointegration may be specified as trace or maximum eigenvalue: for each type, the alternative 
hypothesis is different which may lead to slightly different results. TABLE IV reports the statistics 
for Johansen’s test (for both the trace and eigenvalue versions of the test) and their probability.

The results of TABLE IV show hardly any cointegration exists between the time series: the 
Eigenvalue statistic for the gasoline fuel VAR model suggests the existence of one cointegration 
relation, but this is not confirmed by the trace statistics. Neither does the diesel fuel VAR model 
display any evidence of cointegration. It should be noted that estimating the (unreported) 
vector error correction model (VECM) for gasoline fuel does yield a significant long-run error 
correction term for gasoline demand and Gross National Income per capita as dependent variables, 
suggesting this to be the cointegrated time series. Yet this VECM sheds limited information on 
the relations between determinants: because the optimal VAR model is of lag 1, there are no 

4	 VAR models on the levels were estimated with 4 lags (optimal VAR was determined to have 3 lags; it was augmented by 1 following Toda and 
Yamamoto [12]; Wald tests do not include coefficients of this additional lag).
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short-run relations in the VECM, only the long-run error correction term (which, in turn, is only 
significant for two of four possible variables).

TABLE IV

JOHANSEN COINTEGRATION TEST RESULTS

Null 
hypothesis

Alternative 
hypothesis

Trace statistic 
(prob.)

Eigenvalue 
statistic (prob.)

Gasoline demand per capita, registered cars per capita, gasoline 
price, Gross National Income per capita

r ≤ 3 r > 3 1.157 (0.282) 1.157 (0.282)
r ≤ 2 r > 2 7.789 (0.828) 3.633 (0.887)
r ≤ 1 r > 1 16.654 (0.673) 11.863 (0.573)
r = 0 r > 0 44.232 (0.104) 27.579 (0.047) +

Diesel demand per capita, diesel price, Gross National Income 
per capita

r ≤ 2 r > 2 0.006 (0.936) 0.006 (0.936)
r ≤ 1 r > 1 8.034 (0.469) 8.028 (0.384)
r = 0 r > 0 20.330 (0.412) 12.296 (0.532)

+ p < 0.05.

In order to analyze further evidence on these relations, and in light of the limitations of the 
VECM, the VAR model on first differences is reported in TABLE V for gasoline and diesel fuels.

TABLE V

VAR MODELS ON FIRST DIFFERENCES OF GASOLINE AND DIESEL FUEL DEMAND

Determinant 
(cause)

Gasoline models Diesel models
ΔGasoline 

demand ΔPrice ΔGNI ΔFleet ΔDiesel 
demand ΔPrice ΔGNI

Intercept 0.038* -0.010 0.016* 0.056* -0.046 0.027 0.018*
ΔQTt-1 -0.166 0.312 -0.009 -0.004 -0.046 0.225 -0.010
ΔPt-1 -0.401* 0.162 -0.102* -0.037 -0.236* 0.120 -0.100*

ΔGNIt-1 0.660+ -0.232 0.349* 0.100 0.456 -0.462 0.253+

ΔFleett-1 -0.320 0.302 -0.020 -0.244+ — — —
Adjusted R2 0.324 <0.01 0.219 0.007 0.135 <0.01 0.290

f stat. 7.241 0.718 4.637 1.094 3.703 0.463 8.085
d.f. 4 & 48 4 & 48 4 & 48 4 & 48 3 & 49 3 & 49 3 & 49

Prob. <0.001 0.584 0.003 0.371 0.018 0.709 <0.001
* p < 0.01, + p < 0.05

The VAR models for both fuels confirm price as an exogenous determinant: no other variable 
in the system is a significant determinant of the first difference of either gasoline or diesel price. 
Furthermore, and perhaps more surprisingly, neither there are any significant determinants (save 
the intercept) of the first difference of cars per capita in the gasoline fuel VAR. These three 
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equations (of gasoline price, diesel price, and fleet) all show adjusted coefficients of determinations 
lower than 0.01 and non-significant f statistics.

The first difference of Gross National Income per capita, in both VAR models, is clearly the 
variable most determined by others in the model: both the first lag of Gross National Income per 
capita and of price (as well as the intercept) were significant. Price presented a negative sign, 
Gross National Income a positive sign. Adjusted coefficients of determinations—for a model 
in first differences—are relatively large (over 0.20) and f statistics reject the null hypothesis 
that all coefficients are not different from 0. In sum, these results are in line with the theoretical 
expectations of the price mechanism: the available income grows in the long-run (which can be 
seem in Fig. 1) and high fuel prices reduce available income.

As for the gasoline demand, it is also generally in line with theoretical expectations: the 
model presents an adjusted coefficient of determination of 0.32 (the largest among all equations 
in both models), a large f statistic, and significant determinants for the first difference of price 
(negative) and Gross National Income per capita (positive). The only unexpected result is 
motorization (i.e., the first difference of cars per capita) was not a significant determinant of 
per capita gasoline demand.

Diesel demand in TABLE V is a much weaker model than gasoline demand, which also 
should be expected: the use of diesel is more concentrated on the less elastic freight and public 
transport. Indeed, previous results also coincide with the results of TABLE V in identifying diesel 
price and income elasticities as less than the corresponding elasticities for gasoline [3], [4], [7]. 
Price is a significant determinant and negative of diesel per capita demand; unexpectedly, the 
income proxy Gross National Income per capita is not a statistically significant determinant.

The results reported in TABLE III and TABLE V, as already argued by Singh and Vargas 
[3], advocate for fuel taxes as effective instruments to reduce fuel consumption: an increase 
in fuel price, which may be induced by a tax, reduces per capita demand (as evidenced by the 
Granger causality of fuel demand and the negative, significant coefficients of price in the fuel 
demand models). Direct benefits of such taxation, in addition to carbon emissions reductions, 
include pollution abatement and related health benefits as well as time savings from decreased 
congestion [3]. This effect is larger for gasoline and, thus, should have more limited impacts on 
public transport (the buses that supply it are dependent on diesel and, because of it, diesel price 
increase has been found to present regressive effects on income [5]) and on freight. Furthermore, 
it is also important to note that the lagged first difference of fuel demand is not a significant 
determinant of Gross National Income per capita (TABLE V); therefore, the transport and fuel 
demand constraints imposed by greater price should have limited repercussions on household 
income and prosperity.

Policy interventions on fuel demand require further analysis, as population and economic 
activity patterns in Costa Rica are greatly concentrated; indeed, data for spatio-temporal analysis 
is available [16] and its analysis may provide valuable insights into actionable policy. Specifically, 
the San José metropolitan region concentrated, in 2019, 56 % of gasoline demand 46 % of diesel 
demand [16]; regional average household income in the Central Region (of which the San José 
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metropolitan region is part) is also 1.19 times greater than the country average [17]. Traffic 
congestion has also been found to be fundamentally centered in Costa Rica [18]. In synthesis, a 
surcharge on fuel prices in the San José metropolitan region may have greater benefits and less 
distributional disadvantages, as the problems addressed by this traffic management strategy (i.e., 
an increase of transport costs via greater fuel price, particularly for private cars) are centralized 
there.

The analysis presented in this paper corresponds to a long time series of data —55 years, 
between 1965 and 2019. During this period, the Costa Rican economy has undergone various 
important changes that could have modified the relation between fuel demand, income, and price: 
population during this period more than tripled, during the 1980s, the economy diversified in 
response to the 1980 economic crisis, and the latest global financial crisis of 2007-2008 may 
also have drastically changed the trajectory of the Costa Rica economy. These changes may have 
introduced structural breaks into the time series, thus requiring controlling for them. The same 
argument could be made for the effects of the more recent COVID-19 pandemic, although there 
is insufficient data at present to account for it. The exploration of structural breaks is beyond 
the scope of the models reported in this paper, but it may be a fruitful area for further research 
(including a greater frequency of three-monthly data in lieu of annual time series).

4.	 CONCLUSIONS

The analysis executed and reported in this paper shows evidence of causal relations between 
fuel demand and Gross National Income per capita. Time series including gasoline demand and 
Gross National Income per capita were found to present one cointegration relation (common 
stochastic trend) whereas the diesel fuel VAR resulted in no cointegration relations. Fuel price 
was found to be weakly exogenous.

The results of the developed models for gasoline and diesel demand are, on the whole, 
consistent with previous analysis of aggregate fuel demand in Costa Rica [3], [4], [6], [7]. 
They provide confirmation of the potential for economic instruments for transport demand 
management; but they also provide cautionary signs necessary for the design and implementation 
of these policies. Fuel demand management is an attractive area for carbon mitigation, as most 
fuel consumption (of gasoline and diesel) is explained by transport demand [15], but it also may 
come with negative unforeseen effects on income (as implied by the negative and significant 
effect of fuel price on Gross National Income per capita in TABLE V).

Methodologically, the reported analysis extends previous work on fuel demand modeling 
in Costa Rica by endogenizing income (represented by Gross National Income per capita). This 
proved to be an important contribution for policy design, as negative effects of price on income 
were found to be statistically significant (however, there were no significant effects of fuel demand 
on Gross National Income). These conclusions may be conceptually evident; but the VAR model 
provides a quantitative methodological framework which may be used to assess the impacts of 
eventual taxation through, e.g., impulse response functions. More broadly, extensions of the 
model to other transport time series (e.g., air transport, traffic flows in key national roads) and 
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the exploration of Granger causality with panel data structured per municipality (specifically, 
gasoline demand and its relationship with variables that characterize human settlements, such 
as number of jobs or population density) are promising fields for further research. The latter 
is particularly important because policy interventions can be tailored to focus on the San José 
metropolitan region, where the problems of traffic congestion are, and the benefits of fuel taxes 
should be concentrated.
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ACKNOWLEDGEMENTS

The author gratefully acknowledges relevant feedback from two anonymous referees and 
generous, constructive discussions with prof. dr. Rosendo Pujol, which have led to substantial 
improvements to this paper.

REFERENCES
[1] 	 S. Saidi and S. Hammami, “Modeling the causal linkages between transport, economic growth and 

environmental degradation for 75 countries,” Transport Res D-Tr E, vol. 53, pp. 415–427, 2017, doi: 
10.1016/j.trd.2017.04.031.

[2]	 D. Banister and Y. Berechman, “Transport investment and the promotion of economic growth,” J 
Transp Geogr, vol. 9, no. 3, pp. 209–218, 2001, doi: 10.1016/S0966-6923(01)00013-8.

[3] 	 B. Singh and L. Vargas, Fuel Taxes and Urban Air Pollution in Developing Countries: The Case of 
Costa Rica. Heredia, Costa Rica: CINPE, Universidad Nacional, 1996.

[4] 	 M. Adamson, “Economic growth, energy demand and greenhouse gas emissions in Costa Rica:  
econometric modeling for decision making”, presented at the Open Meeting of the Global Environmental 
Change Research Community, Montreal, Canada, Oct. 16-18, 2003.

[5] 	 A. Blackman et al., “Fuel tax incidence in developing countries: The case of Costa Rica,” Energy 
Policy, vol. 38, pp. 2208–2215, 2010, doi: 10.1016/j.enpol.2009.12.007.

[6] 	 C. Leiva, “Elasticidades de la demanda de energía,” Dirección Sectorial de Energía, San José, Costa 
Rica, 1992.

[7] 	 C. Leiva, “Las Elasticidades de la Energía Comercial en Costa Rica,” Dirección Sectorial de Energía, 
San José, Costa Rica, 2008.

[8] 	 G. Godínez-Zamora et al., “Decarbonising the transport and energy sectors: Technical feasibility and 
socioeconomic impacts in Costa Rica,” Energy Strategy Rev, vol. 32, pp. 100573, 2020, doi: 10.1016/j.
esr.2020.100573.

[9]	 B. Liddle, “Long-run relationship among transport demand, income, and gasoline price for the US,” 
Transport Res D, vol. 14, pp. 73–82, 2009, doi: 10.1016/j.trd.2008.10.006.

[10]	 Z. Wadud et al., “A cointegration analysis of gasoline demand in the United States,” Appl Econ, vol. 
41, pp. 3327–3336, 2009, doi: 10.1080/00036840701477306.



Ingeniería 33(1): 22-33, Enero-Junio, 2023. ISSN: 2215-2652. San José, Costa Rica	 DOI 10.15517/ri.v33i1.50910 33

[11]	 J.R. Freeman, “Granger Causality and the Times Series Analysis of Political Relationships,” Am J 
Polit Sc, vol. 27, no. 2, pp. 327–358, 1983, doi: 10.2307/2111021.

[12] 	 H.Y. Toda y T. Yamamoto, “Statistical inference in vector autoregressions with possibly integrated 
processes,” J Econometrics, vol. 66, pp. 225–250, 1995, doi: 10.1016/0304-4076(94)01616-8.

[13]	 H. Lütkepohl, New Introduction to Multiple Time Series Analysis. Berlin, Germany: Springer, 2005.
[14]	 LCR Logística S.A., “Estudio de oferta y demanda de transportes de la GAM,” Proyecto PRUGAM, 

San José, Costa Rica, 2007.
[15]	 SEPSE. “Balances energéticos.” SEPSE. https://sepse.go.cr/nuestros-productos/balances-energeticos/ 

(accessed June 30, 2021).
[16]	 RECOPE. “Estadísticas de Ventas.” RECOPE. https://www.recope.go.cr/productos/ventas/ (accessed 

Sept. 19, 2021).
[17]	 INEC. “Encuesta Nacional de Hogares (ENAHO) 2019.” INEC. https://inec.cr/sistemas-de-consulta 

(accessed Sept. 19, 2021).
[18]	 S. Gómez and M. Cubero, “Congestión vial en los cantones de Costa Rica,” investigación de base 

para el informe Estado de la Nación, CONARE y Programa Estado de la Nación, San José, Costa 
Rica, 2019.


