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Abstract
This paper presents a research study about timber shear walls, with materials commercially available in 

Costa Rica. With new developments in engineered timber, the Costa Rican Seismic Code included a chapter 
on timber structures, defining diaphragms and shear walls as part of the lateral resisting system.  A research 
study was then carried out, with the objective of determining the structural behavior of a typical shear 
wall. Twelve specimens were constructed and tested, varying the nail spacing and anchorage system. The 
specimens were tested with monotonic and cyclic loading procedures according to ASTM E564 and ASTM 
E2126 respectively. It was found that the specimens can develop an adequate shear strength and stiffness if 
the end studs are adequately anchored to the foundation. These results are an important input for the Costa 
Rican Seismic Code and for the development of engineered timber in Costa Rica.
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Resumen
Este artículo presenta una investigación sobre muros de cortante de madera, con materiales disponibles 

comercialmente en Costa Rica. Con nuevos desarrollos en la ingeniería de la madera, el Código Sísmico de 
Costa Rica incluyó un capítulo de estructuras de madera y definió diafragmas y muros de corte de madera 
como parte del sistema de resistencia lateral. Debido a lo anterior, se llevó a cabo un estudio experimental, 
con el objetivo de determinar el comportamiento estructural de un muro de cortante típico. Se construyeron 
doce especímenes de ensayo, variando el espaciamiento de los clavos y el sistema de anclaje. Los especímenes 
se ensayaron ante carga monotónica y cíclica, según los procedimientos de las normas ASTM E564 y ASTM 
E2126, respectivamente. Se encontró que los especímenes pueden desarrollar una capacidad y rigidez 
adecuadas, siempre y cuando los postes extremos se fijen a la fundación. Estos resultados son un insumo 
importante para el Código Sísmico de Costa Rica y para el desarrollo de la ingeniería de la madera en Costa 
Rica.
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1. INTRODUCTION

In Costa Rica, timber was widely used for construction during the first half of the 20th 
century. However, with the arrival of the masonry concrete block and the unconscious felling 
of native trees, the use of timber in buildings diminished rapidly. During the second half of the 
20th century, timber in construction was left to finishes such as floors, roofs, decks, skirting, 
stairs and the like. During the decades of the 80’s and 90’s, reforestation efforts made in different 
parts of the country provided sources of timber construction purposes which are still available 
today. As not all the demand is supplied from native forests and plantations, in recent years, 
increasing amounts of lumber and plywood are imported from different countries, such as Chile, 
China, United States, Argentina and Brazil. A few timber companies started to grow and produce 
timber for construction. In 2002, the Costa Rican Seismic Code included a chapter on structural 
timber. It was a chapter of two pages that gave a few indications on structural design of timber, 
mostly referencing to other documents. In 2010, the new chapter on timber structures expanded 
to twenty pages. In this chapter, wood framed diaphragms and shear walls were introduced. 
The given specifications are based on AF&PA [1]. There are also several requirements that are 
based on CEN [2]. The purpose of this paper is to present research carried out in Costa Rica, 
regarding wood framed walls, constructed with materials available in Costa Rica. The objective 
of this research is to verify whether the provisions given in the Costa Rican Seismic Code are 
suitable for the available materials. Hence, an experimental program was developed, in which 
twelve wood framed shear walls were constructed and tested at the facilities of the National 
Laboratory for Materials and Structural Models of the University of Costa Rica. In the first 
part of the program, six specimens were tested without hold-down anchors [3], [4]. During the 
second part, other six specimens were tested with hold-down anchors [5], [6]. The idea was 
to obtain a lower and higher strength boundary for both conditions, respectively, and compare 
them with strength design.

Research on wood frame shear walls has been extensively carried out, especially on those 
regions where they are part of the typical building system. The design methods and code 
specifications are based on the knowledge acquired in those studies. For instance, in the last five 
years, the following investigations among others can be mentioned. Branco et al. investigated 
the influence of sheathing panels and hold down anchors in the structural behavior of light 
framed walls [7]. Using an analytical model, they could predict the behavior with an error of 
approximately 24 % higher for the experimental values. Nagase et al. evaluated the performance 
of a plywood to timber connection with nails or screws under cyclic loading [8]. With this study, 
they found out the lifetime failures of the connection and could estimate the load – displacement 
relationship by combining the yield mode theory and failure lifetimes. Dhonju did his doctoral 
research on a parametric study on wood framed walls [9]. He carried out several tests on wood 
framed walls subjected to horizontal loads, varying fastener size and spacing, wall length, studs 
and plates configurations and vertical load. Among several conclusions, he found out that the 
spacing of the fasteners has more influence on the shear strength when subjected to vertical load. 
However, the stiffness is more affected by fastener spacing when no vertical load is applied. Also, 
the results from the recently developed shear wall called “Mid-ply wall” showed better strength 
and stiffness than the standard walls. Shadravan et al. conducted research on wood framed walls 
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in which they varied stud spacing, nail type and spacing, anchor bolt spacing and washer size, 
and base plate [10]. The results showed that decreasing the anchor bolt spacing from 1.8 m to 0.9 
m and using double bottom plates increased the wall shear strength 122 %. Orellana et al. did an 
investigation on the structural behavior of wood frame shear walls subjected to horizontal loads 
simultaneously with high compressive loads, simulating the conditions for midrise buildings 
[11]. They found out that the load carrying capacity, stiffness, energy dissipation and ductility 
ratio are higher when high compressive loads are present. Therefore, not considering the effects 
of gravitational loads and bending moments might be too conservative.

The results of this research will serve as the first set of data on wood shear walls built with 
local materials and is intended to promote wood construction in the country.

2. MATERIALS AND METHODS

2.1 Test specimens

A total of twelve test specimens were constructed, each of them consisting of 2.44 × 2.44 
m wood framed walls with plywood sheathing. From the twelve specimens, six did not have 
hold-down anchors at the end studs (type A specimens), as mentioned above. These specimens 
did not have hold downs because one of the purposes was to show the effect in strength and 
stiffness of not having them at the end studs. However, it is not recommended to build these walls 
without the hold downs, especially in wind and seismic prone areas. The other six specimens did 
have hold-down anchors at the end studs (type B specimens). From each of the two specimen 
types, three were constructed with a constant nail spacing of 150 mm (specimen A1 or B1). The 
spacing for the other three was reduced to 100 mm (specimen A2 or B2). Monotonic loading 
was applied to one of each group of three specimens, whereas cyclic loading was applied to the 
other two (see TABLE I). Each wood frame consisted of five 2×4’’ studs, spaced at 610 mm on 
center and 2×4’’ top and bottom plates. It should be noted that the loading beam in the test setup 
acts as the collector for the tested wall, so in practice the upper plate (beam) shall be composed 
of two 2×4’’ elements.  On the other hand, the end studs (chords) were composed by one 2×4’’ 
studs for comparison purposes between the specimens with and without hold down anchors. 
However, it is recommended to build these walls with at least two 2×4’’ studs (chords) at the 
end of the wall, especially in wind and seismic prone areas. The wood frame species was radiate 
pine (Pynus radiata) from Chile. The sheathing consisted of two 1.22 × 2.44 m, 9 mm thick 
plywood utility boards on both sides of the frame. Fig. 1 shows the test specimen used in this 
research. The connectors were common nails with 3.64 mm in diameter and 70 mm in length 
(ASTM F1667). The hold-down anchors utilized for the end studs of type B specimen, were steel 
angles connected to the stud by twenty-five screws (6 mm in diameter, 4.8 mm in root diameter 
and 68 mm of penetration) and to the bottom plate by a bolt (25 mm in diameter and 190 mm in 
length, SAE Grade 5). Lower capacity steel angles were also installed on the rest of the studs.
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TABLE I
DESCRIPTION OF TEST SPECIMENS

Specimen 
type

Hold-down 
anchors

Nail spacing at wall boundaries 
and panel edges [mm]

Loading protocol

A1M NO 150 MONOTONIC
A1C-1 NO 150 CYCLIC
A1C-2 NO 150 CYCLIC
A2M NO 100 MONOTONIC

A2C-1 NO 100 CYCLIC
A2C-2 NO 100 CYCLIC
B1M YES 150 MONOTONIC

B1C-1 YES 150 CYCLIC
B1C-2 YES 150 CYCLIC
B2M YES 100 MONOTONIC

B2C-1 YES 100 CYCLIC
B2C-2 YES 100 CYCLIC

Fig. 1. Test specimen.
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2.1 Experimental setup

The specimens were tested according to ASTM E564 [12] for the monotonic tests and ASTM 
E2126 [13] for the cyclic tests. The base of the wall was connected to the reaction floor via a 
steel beam. This beam was fixed to the reaction floor with anchor bolts. The bottom plate of the 
test specimen was attached to the bottom steel beam with bolts, 12.7 mm in diameter and 125 
mm in length, spaced at 100 mm on center. More details of this connection can be found in [3] 
and [4]. The top of the wall was connected to a loading steel beam, which in turn was attached 
to the actuator. The latter was fixed to the reaction wall. Two steel frames prevented the beam 
from going sideways. The actuator transfers the load to the specimen through the loading steel 
beam, resulting in a distributed horizontal load at the top of the specimen. The specimen is forced 
to deform in its plane, including bending deformation of the chords (end studs), sheathing shear 
deformation, nail slip and anchor uplift. Vertical deformation of the specimen is possible due 
to the hinges at both ends of the actuator. In the case of the type A specimens, the load beam 
was connected to the wall by steel angles and bolts through the thickness of the wall lower 
than the top plate and, therefore, the horizontal load was transferred by bearing of the bolts in 
the sheathing on both sides. However, for type B specimens, which are stronger than type A 
specimens, this loaded system did not work and a new load beam was constructed, so that the 
loading transfer were achieved by connecting the load beam to the top plate with lag screws, 
12.2 mm in diameter, 9.6 mm in root diameter and 109 mm long spaced at 115 mm on center. 
More details of these connections can be found in [5] and [6]. Fig. 2 shows a photograph of the 
experimental setup used in this research.

Fig. 2. Test setup.
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Loading Protocol

The loading protocol for the monotonic tests consists of the following steps (based on 
ASTM E564): 

1. Once all the measurement devices are checked, the specimen is loaded at 10 % of the 
anticipated maximum load. 2. The load is maintained for five minutes and then removed. 3. 
After five minutes, the initial data is recorded (displacements). 4. Then, the specimen can be 
loaded to several limit states, usually a certain amount of the maximum load, such as one third 
or two thirds. If this is the case, the load is maintained for five minutes and then removed. Step 
3 is repeated. 5. The specimen is loaded until failure. Failure is defined when the peak load 
decreases 20 %.

The loading protocol for the cyclic tests is as follows (based on method B of ASTM E2126):

1. The specimen is subjected to five displacement cycles, based on the ultimate displacement 
(Δm) obtained from the monotonic test. The magnitude of each displacement cycle is 1.25, 2.5, 
5, 7.5 and 10 % of Δm. 2. Afterwards, the displacement cycles are repeated three times at the 
following levels: 20, 40, 60, 80, 100 and 120 % of Δm. 3. If the specimen has not failed, the 
displacement cycle is incremented by 20 % and repeated three times. 4. If the specimen has not 
failed, step three is repeated until failure.

Instrumentation

The test specimen was instrumented with four LVDT’s (Linear Variable Differential 
Transformers). LDVT 3 measures the horizontal displacement at the center of the top plate, 
LVDT 2 and LVDT 4 measure the vertical displacement of the end studs (chords) and LDVT 1 
measures the horizontal displacement of the bottom plate (see Fig. 2). The actuator registered 
the applied load and displacement which is like the LVDT 3 measurement. The flexural and 
shear behavior of the specimen can be derived from the measurements mentioned above as will 
be explained in the next section.

3. RESULTS

3.1 Summary of results

The main results are shown in TABLE II. These values are calculated by assuming an 
equivalent energy elastic-plastic curve according to ASTM E2126 and is presented in the 
following section.
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TABLE II
EXPERIMENTAL RESULTS

Specimen vmax [kN/m] vY [kN/m] Δu [mm] ΔY [mm] G [kN/m] D
A1M 8.70 8.07 56.4 9.52 2070 5.93

A1C-1 8.22 7.38 49.1 13.1 1595 3.75
A1C-2 8.16 6.95 41.4 9.37 2810 4.40
A2M 11.3 10.3 53.2 10.8 2290 4.95

A2C-1 11.1 9.77 49.6 13.4 3510 3.70
A2C-2 11.4 10.2 45.0 8.70 3000 5.18
B1M1 19.1 17.0 78.5 26.6 1566 2.95
B1C-1 17.6 15.4 67.0 12.6 3026 5.51
B1C-2 16.2 14.2 62.5 12.2 2821 5.10
B2M 22.1 19.9 69.1 10.9 4443 6.34

B2C-1 23.6 21.2 82.4 14.9 3430 5.53
B2C-2 24.7 21.7 77.0 18.4 2749 4.20

1This test specimen failed at the connection between the load beam and the top of the specimen 
and the reported values might not represent the expected behavior. These results are not considered 
when comparing with theoretical calculations.

Symbols: vmax: maximum unit shear load, vY: yield unit shear load, Δu: ultimate displacement,ΔY: 
yield displacement, G: apparent shear stiffness, D: ductility factor

3.2 Calculation procedure

From the load – displacement curves, the maximum load and ultimate displacement are 
obtained:

Pmax: maximum applied load during test, kN. Δu: displacement at failure or at 0.8Pmax after 
Pmax has been reached, mm. The area under the envelope curve (A) up to Δu is estimated first 
(see Fig. 3 and Fig. 4).

Fig. 3. Envelope curve.
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Fig. 4. Representation of the EEEP curve.

The elastic stiffness is assumed to be:

  Where Δe is the displacement at 0.4Pmax. (1)

The yield load is calculated assuming an equivalent energy elastic-plastic curve (EEEP). 
For the cyclic load tests, an envelope curve is obtained from the maximum points in the first 
cycle of each displacement. This is done for the positive and negative curves (see Fig. 3). Once 
the envelope curves are drawn, the EEEP curve is defined (see Fig. 4). Once Ke is calculated, 
the yield load (PY) is obtained from:

 (2)

The yield displacement is then calculated by:

 (3)

The ductility factor D is obtained from:

 (4)

The unit shear loads (vmax and vY) are obtained by dividing the maximum and yield loads 
(Pmax and PY) by the length of the wall (2.44 m). The apparent shear stiffness (includes bending 
deformation of the end posts, panel shear deformation, nail slip and anchor uplift) is estimated by:

 (5)

The displacement Δ considered in the calculations, corresponds to Δ3-Δ1 according to Fig. 2.

3.3 Load – displacement curves

Fig. 5 and Fig. 6 present the load – displacement curves obtained from each of the tested 
specimens.
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Fig. 5. Load – displacement curves for type A specimens.



 GONZÁLEZ: Experimental Testing of Wood Framed Walls with Available Materials in Costa Rica...10

Fig. 6. Load – displacement curves for type B specimens.

3.4 Physical properties of materials

The moisture content and density of the wood frame and sheathing during testing is shown 
in TABLE III.

TABLE III
PHYSICAL PROPERTIES OF WOOD FRAME AND SHEATHING DURING 

TESTING

Type A specimens Type B specimens
Wood frame Sheathing Wood frame Sheathing

Moisture content [%] 15.1 13.5 15.5 13.3
Density [kg/m3] 532 513 420 549
Relative density 0.46 0.45 0.36 0.48

Oven-dry density [kg/m3] 490 466 385 500
Oven-dry relative density 0.49 0.47 0.38 0.50
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3.5 Failure modes

Fig. 7 shows the typical failure modes observed during testing. As can be seen, the most 
common failure mode for type A specimens is nail bending near the end posts where the stresses 
are higher (A1). In the case of type B specimens, the failure mode observed in all tests was panel 
withdrawal near the middle studs (B1). Furthermore, in a few cases, one of the end studs failed 
in tension (B2) and panel buckling at the compression end was also observed (B3).

Fig. 7. Typical failure modes. A1: Nail bending and end stud uplift. A2: Deformed nails in type 
A specimens. B1: Panel withdrawal. B2: End stud failing in tension. B3: Panel buckling. B4: 

Deformed nails in type B specimens.

3.6 Theoretical calculations

In this section, the nominal shear strength (vn), the design shear strength (v’), the apparent 
shear stiffness (Ga) and the deflection (ծsw) of the wall will be estimated.

Shear strength

The shear strength will be estimated first by considering the lateral nail strength. Then, it will 
be estimated with table A.4.3A of AF&PA [1].  The lateral nail strength is estimated according to 
AF&PA [14]. Lateral nail strength depends on the oven-dry density of the frame and sheathing 
(G0m and G0s respectively), nail diameter (d), nail penetration in frame and sheathing (lm and ls, 
respectively) and nail yield bending (Fyb). First, the bearing strength for the frame and sheathing 
(Fem and Fes, respectively) are calculated with Eq. (6).

 (6)

For the frame: Fem=114.5(0.49)1.84=30.8 MPa for type A specimen; Fem=114.5(0.38)1.84=19.3 
MPa for type B specimen. For the sheathing: Fes=114.5(0.47)1.84=28.5 MPa for type A specimen; 
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Fes=114.5(0.50)1.84=32.0 MPa for type B specimen; Fyb=620 MPa , d = 3.64 mm, lm = 70-9 = 61 
mm, ls = 9 mm.

With these parameters, the nominal lateral nail strength is: Zn = 1220 N for type A specimen 
and, Zn = 1122 N for type B specimen. The failure mode is IIIs, in which a plastic hinge in the 
nail is formed in the main member (frame member), and the nail develops the bearing strength 
on both the main and side (sheathing) member.

The nominal unit shear strength can be obtained by dividing the nominal lateral nail strength 
by the nail spacing, and because there is sheathing on both sides, the value is multiplied by two:

 (7)

= ( )
.

= 16267 N
m

= 16.3 kN/m    for type A1 specimen; = ( )
.

= 24400 N
m

= 24.4 kN/m 

for type A2 specimen; = ( )
.

= 14960 N
m

= 15.0 kN/m for type B1 specimen; 

= ( )
.

= 22440 N
m

= 22.4 kN/m  for type B2 specimen. The design strength v’ is then obtained 

by multiplying the nominal value by 0.65 (connection strength factor, ϕz), see TABLE IV.

TABLE IV
UNIT SHEAR STRENGTH IN kN/m, ACCORDING TO TABLE A.4.3A OF 
REFERENCE [2] AND BASED ON NAIL STRENGTH (IN BRACKETS)

Seismic Wind
Specimen vn v’ vn v’

A1 12.4 [16.3] 9.92 [10.6] 17.4 [16.3] 13.9 [10.6]
A2 18.1 [24.4] 14.5 [15.9] 25.4 [24.4] 20.3 [15.9]
B1 11.3 [15.0] 9.04 [9.75] 15.8 [15.0] 12.6 [9.75]
B2 16.4 [22.4] 13.1 [14.6] 23.0 [22.4] 18.4 [14.6]

Apparent Shear Stiffness

The apparent shear stiffness, Ga, is also estimated with table A.4.3A of AF&PA [1]. The value 
for type A1 or B1 specimen is 2522 kN/m. The value for type A2 or B2 specimen is 3152 kN/m.

Shear wall deflection

Shear wall deflection, ծsw, is calculated according to Eq. (8), see AF&PA [1].

 (8)

Where: ծsw is the shear wall deflection, mm. b is the shear wall length, mm. Δa is the total 
vertical elongation of wall anchorage system (including nail slip, anchorage device elongation, 
etc.) at the induced unit shear in the wall, mm. E is the modulus of elasticity of end studs, MPa. 
A is the area of end studs’ cross section, mm2. Ga is the apparent wall shear stiffness due to nail 
slip and panel shear deformation, kN/m. h is the shear wall height, mm. vu is the induced unit 
shear in the wall, kN/m. With b = 2440 mm, E = 10 000 MPa, A = 40×90 = 3600 mm2, Ga = 
2522 kN/m or 3152 kN/m, h = 2440 mm:
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δsw=0.11vu+0.967vu+Δa for type A1 or B1 specimen and, δsw=0.11vu+0.774vu+Δa for type A2 or 
B2 specimen. Taking the average maximum shear strengths, vmax, and the average yield strengths, 
vY, the shear wall deformations are determined for both strengths and shown in TABLE V.

TABLE V
ESTIMATED SHEAR WALL DEFORMATIONS ACCORDING TO EQ. (8). Δa IS NOT 

INCLUDED

Specimen type vmax [kN/m] ծsw [mm] at vmax vY [kN/m] ծsw [mm] at vY

A1 8.36 9.01 7.47 8.07
A2 11.3 9.99 10.1 8.93
B1 17.6 19.0 15.5 16.7
B2 23.5 20.8 20.9 18.5

4. DISCUSSION

4.1 Type A specimen

As can be observed in Fig. 5, all the test specimens behaved in a similar way: approximately 
linear – elastic up to 30 – 40 % of the maximum load. After that point, the stiffness decreases 
as the deflection increases until the maximum load (zero stiffness) is reached. Then, the load 
drops as the deflection increases until failure occurs. As was described in the previous section, 
the failure is due to the bending of the nails, especially at the lower corners, near the end studs, 
where the vertical loads are high. Hence, it is noticeable that the structural behavior of the 
specimen is controlled by the connections between frame and sheathing. When comparing the 
monotonic and cyclic behavior, the monotonic curves correspond to the envelope curve of the 
first cycles of the cyclic curves (compare A1M with A1C-1 and A1C-2 and A2M with A2C-1 
and A2C-2). The cyclic tests showed well-formed hysteresis loops, in which a load decrease 
occurs for the second and third cycle. A typical pinching effect was also observed, and it is due 
to the holes left by the nails bearing in the frame and sheathing, so when the loads are reversed, 
the stiffness is reduced until the nail bears against the frame and sheathing again. An average 
ductility factor of 4.6 was obtained from these specimens, implying energy dissipation and an 
adequate behavior for seismic action. The shear strength increased about 35 % when decreasing 
nail spacing from 150 mm to 100 mm. When comparing the estimated shear strength with the 
experimental values, the latter were lower. For A1 specimens, the experimental values were 
approximately 2.0 times lower than the estimated ones, considering the wind value and the nail 
strength value. For A2 specimens, the experimental values were approximately 2.2 times lower. 
This is because type A specimens do not have hold-down anchors, and hence, the capacity is 
diminished because the nails have to transfer the end studs’ tension and compression forces. With 
these tests, it was confirmed that the estimated capacities are applicable when the end studs are 
anchored to the foundation. The experimental shear stiffness was also lower than the estimated 
ones, as was expected since the experimental shear stiffness includes bending deformation of the 
chords and uplift of the anchorage device. For type A1 specimen, the average experimental shear 
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stiffness was 14 % lower than the theoretical one, whereas for type A2 specimen, the average 
experimental shear stiffness was just 6.9 % lower. The hold-down anchors have less influence on 
the stiffness than on the strength. Finally, when comparing the estimated shear wall deflections 
(average of 9.5 mm) at maximum induced forces, they seem quite lower than the experimental 
ones. But multiplying these values by the ductility factor (9.5×4.6 = 43.7 mm) gives a more 
realistic and comparable value. The average experimental value is 49 mm so the approximate 
anchorage uplift (in this case nail slip) would be 49 - 43.7 = 5.3 mm. At yield strength level, 
the experimental values are 20-30 % higher.

4.2 Type B specimen

As can be observed in Fig. 6, all the type B specimens behaved in a similar way as the 
type A specimens. In the case of type B specimens, the failure, in most cases, is due to the nail 
lateral capacity and nail withdrawal at the panel edges as can be seen in Fig. 7 (B1). Other 
failure modes were also observed in a few cases, such as tension failure at the end stud and 
panel buckling (see Fig. 7 (B2) (B3)). When comparing the monotonic and cyclic behavior, it 
was the same as with type A specimens. The cyclic tests showed similar behavior than type A 
specimens as well. An average ductility factor of 5.3 was obtained from these specimens. The 
shear strength increased about 34 % when decreasing nail spacing from 150 mm to 100 mm. 
When comparing the estimated shear strength with the experimental values, there was a good 
agreement. For B1 specimens, the experimental values were approximately 11 % higher than 
the estimated ones, considering the wind value and the nail strength value. For B2 specimens, 
the experimental values were approximately 2 % higher. The experimental shear stiffness was 
also higher than the estimated ones. For type B1 specimen, the average experimental shear 
stiffness was 16 % higher than the theoretical one, whereas for type B2 specimen, the average 
experimental shear stiffness was 12 % higher. Finally, when comparing the estimated shear wall 
deflections (average of 19.9 mm) at maximum induced forces, they seem quite lower than the 
experimental ones. Multiplying these values by the ductility factor (19.9×5.3 = 105 mm) gives 
a higher value than the ones obtained experimentally (65 mm for specimens B1 and 76 mm 
for specimens B2). This difference is probably due to the estimated ductility factor. At yield 
strength level, the estimated value was 11 % higher for B1 specimen but for B2 specimen, the 
estimated value was 13 % lower.

4.3 General discussion

When comparing type A specimens with type B specimens, it was evident that type B 
specimens presented a better overall behavior than type A specimens. This confirms the importance 
of having hold-down anchors at the end studs of the wall. The shear strength of type B specimen 
was approximately 2.0 times that one of type A specimen. Type B specimen was also stiffer than 
type A specimen, 35 % stiffer for specimens with a nail spacing of 150 mm and 20 % stiffer 
for specimens with a nail spacing of 100 mm. The ductility factor was also higher for type B 
specimen (about 15% higher). However, as pointed before, the most relevant difference between 
the two types of specimens is the shear strength.
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5. CONCLUSIONS

Wood frame shear walls constructed with available materials in Costa Rica can develop 
adequate shear strength and stiffness if the end studs are adequately anchored to the foundation.

All the specimens showed ductile behavior (ductility factors ranging from 3.7 to 6.3) which 
is important for energy dissipation during an earthquake. 

The shear strength for type B specimen was higher than the nominal shear strength, which 
indicates that it can be safely designed with code specifications. 

As expected, the shear strength for type A specimen was lower than the nominal strength, 
and hence, it is not recommended for its use as part of the lateral resisting system.
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