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Abstract

Land value patterns show very distinct spatial associations with accessibility to urban centralities 
and physical factors in a territory. However, predictions based on models of this structure can be highly 
uncertain, as the underlying data also may show clustering (thus allowing for better predictions in more 
densely sampled areas). An assessment of this uncertainty for land value extrapolations in the San José 
Metropolitan Region of Costa Rica is presented, via conditional Gaussian simulation, and the determinants 
of this uncertainty were explored, to find spatial strengths and weaknesses in the modeling efforts. The 
E-Type prediction from the conditional Gaussian simulation was found to marginally improve on ordinary 
kriging methods and it also provided explicit uncertainty patterns, which are the inverse of the land value 
prediction. The estimated uncertainty was found to decrease with characteristics that identify suitability 
for urban land use (and thus higher land values).
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Resumen

Los patrones de valor del suelo muestran asociaciones espaciales claras con accesibilidad a 
centralidades urbanas y a factores físicos de un territorio. Sin embargo, las predicciones basadas en esta 
estructura pueden ser altamente inciertas, dado que los datos mismos también exhiben aglomeración (y, 
por tanto, permiten mejores predicciones en las zonas más densamente muestreadas). Se presenta una 
evaluación de esta incertidumbre para extrapolaciones de valor del suelo en la Gran Área Metropolitana 
de Costa Rica mediante simulaciones gaussianas condicionales y una exploración de los determinantes de 
esta incertidumbre, como forma de reconocer fortalezas y debilidades de esta predicción. La predicción 
E-Type simulada resultó marginalmente mejor que extrapolaciones mediante kriging ordinario y produjo 
una cuantificación espacialmente explícita de la incertidumbre. El patrón de incertidumbre resultó ser un 
espejo de los valores del suelo. Se encontró que la incertidumbre se reduce con características asociadas 
a mayor aptitud del suelo para usos urbanos y, por tanto, de mayor precio.
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1. INTRODUCTION

The analysis of uncertainty of land value models is a critical 
issue for policy formulation [1]. However, while the use of Gaussian 
simulation to understand uncertainty has long been applied to 
physical land variables (e.g., [2]) and despite kriging having been 
applied to land rents for at least 20 years [1], no previous cases of 
conditional Gaussian simulation applied to land value modeling 
were found .

In general, the analysis of land value in the San José 
metropolitan region (GAM) has been fragmentary [1]. Recent 
efforts from extension and research projects at the University of 
Costa Rica, however, have yielded a data set of real estate listings 
that provided the first synoptic view of real estate prices in the 
region [3]. Based on this data, hedonic price models of housing 
have been produced [3,4] and the first efforts at extrapolation of 
land values for the entire region (based on kriging and co-kriging) 
were developed [1]. To isolate land values, [1] consider in their 
analysis only lots —i.e., properties offered in the land market with 
no buildings on them and, therefore, with prices only reflecting the 
attributes of land—; these initial efforts yielded estimates of mean 
values and of variance, but they were limited to the kriging and 
co-kriging models.

Given the current state of the question, two objectives are 
proposed for this paper: first, to extend previous work on land value 
extrapolation (by [1]) to include conditional Gaussian simulation 
and, specifically, to include uncertainty estimates for the predicted 
land value that can be derived with this method; second, to explore 
whether the uncertainty of these estimates can be explained by 
spatial structure (indeed, by the same spatial structure related to 
the point pattern of real estate listings and to the land value pattern 
itself).

2. METHODOLOGY

2.1 Land values in the GAM
Data were compiled by [1] from real estate listings published 

on the web during 2020-2023. From an original data set of 3670 
records with known location and price, extreme values (for the 
variables price, lot area, and price per square meter) were filtered 
out, resulting in a final data set of 3196 records. This data set was, in 
turn, divided by randomly selecting approximately 10 % of records: 
a calibration data set of 2878 records and a validation data set of 
318 records result from this data wrangling process.

The final data sets (of calibration and validation) are shown 
in Fig. 1. Locations in panel (a) coincide mainly with the urban 
fabric of the GAM. It is worth noting that the calibration data seem 
to include a greater proportion of locations in the more central 
locations (or, conversely, the calibration data are distributed in a 
way that should better represent the peripheral land values). The 
land value per square meter was transformed into logarithms (as 
in [1], [3], [4] and, more generally, following a standard practice 
in the analysis of land values). The logarithmic transformation of 
both the calibration and validation data sets (panel (b) of Fig. 1 

presents the histogram with a logarithmic scale on the horizontal 
axis) show a normal distribution, as should be expected, although 
with some degree of skew towards the left (this may be explained 
because the filtering process of extreme values is more efficient 
in excluding excessively large values of price, area, and price per 
unit of area).

Fig. 1. (a) Lot data locations and (b) histogram of price (log. of USD per 
square meter) in the GAM (in red, calibration data; in green, validation data).

2.2 Geostatistical analysis and conditional Gaussian simulation

As the final objective of the modeling efforts is to produce a 
spatially explicit prediction of land values per square meter, which 
is essentially an extrapolation, ordinary kriging was selected to 
generate a linear weighted estimation for land values at unknown 
locations from the data set [5], [6], [7].

In kriging, the spatial dependence structure is modeled through 
a semivariogram, a function that relates the mean semivariance 
(the squared differences in the Z value for pairs of locations xi, for 
locations with known Z values) for all N pairs of locations within 
a range of distances h [1],[6],[7]:

The empirical  semivariogram is fitted by a function with a 
specified form; for the GAM, [1] proposed a spheric adjustment; 
the gstat package can determine the optimal parameters for this 
function, based on the data [8].

( ) = ( )
[ ( + ) ( )]( )  (1)

Under the kriging method, the predicted Ẑ values for xi locations with 
unknown land values result from a weighted average of locations 
(with weights wi) with known land value, Z(xi):
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Ordinary kriging chooses the optimal weights by minimizing 
kriging variance, which can be determined from the semivariogram 
model [5],[6].

The uncertainty estimate for the extrapolation was 
determined using sequential Gaussian simulation, which is a 
technique to systematically simulate realizations of a random field. 
Given a semivariogram from the data and a random path through 
all locations with no known values (such that each location is 
only visited once), the sequential Gaussian simulation algorithm 
proceeds as follows: (1) it searches for all sampled data and 
for all previously simulated locations, (2) it applies kriging to 
neighboring points and determines from it the linear estimate 
and its variance, (3) sample the value from a normal distribution 
with mean and variance from the kriging of the previous step, (4) 
assign the sampled value to the location and proceed along the 
random path to the next location [5]. The simulation is termed 
conditional because it is conditioned on the data, via the kriging.

One hundred instances of land value patterns were simulated 
using conditional Gaussian simulation; at each instance, only the 
closest 320 points to the location being extrapolated (approximately 
10 % of the calibration data) were considered in the kriging. Data 
on each simulated instance were back-transformed into their 
original units. Based on these simulations, the following metrics 
were reported: (1) the E-Type prediction, which is the per location 
(i.e., ensemble) mean of the land value [5], (2) the per location 
standard deviation and coefficient of variation (the coefficient of 
variation is the ratio of standard deviation to mean), and (3) the 
per location 95th and 5th percentiles, as plausible bounds within 
which the actual land value should be found. Calculations were 
performed using the gstat package [8] of statistical software R [9].

2.3 The determinants of uncertainty: an exploration of social 
and physical factors

The pattern of the simulated standard deviations was 
analyzed to explore its association with other possible spatial 
factors, in line with the objectives proposed. The variance follows 
a χ2 distribution. Therefore, to find the statistical significance of 
the variation in the standard deviation associated to any given 
factor, the following approach was employed: for all locations 
in the prediction space, (1) histograms were computed for each 
spatial factor and the locations were classified into three separate 
groups based on limits defined by changes in the histograms of 
the spatial factor; (2) a Kolmogorov-Smirnov non-parametric test 
was conducted to determine whether the statistical distribution of 

the standard deviation of any group was different from each of 
the other groups (for each factor separately); (3) smooth kernel 
densities were estimated for each group (using the geom_density() 
function of the package ggplot [10] from R [9]); these densities 
were compared. The  relative positioning of the different kernel 
densities (determined by the group) was  interpreted to understand 
how the factor affected the standard deviation. The general 
expectation was that factors associated with greater suitability 
for urban land use such as flatter terrain and greater accessibility 
would present less uncertainty, as they should also be correlated 
with greater density of locations with known land values [11].

Following [12], the Kolmogorov-Smirnov test is the most 
common instrument to explore the hypothesis of whether two 
samples are taken from the same statistical distribution. Taking 
two samples, x1, …, xm and y1, …, yn from two distribution 
functions, F and G, one may form the empirical distribution 
functions Fm: =| {xi: xi ≤ x} |/m and Gn: =| {yi: yi ≤ y} |/n. The test 
statistic for the null hypothesis that F = G is given by:

^ = ( ) (3)

which should be contrasted using probabilities from the cumulative 
Kolmogorov distribution [12].

3. RESULTS

As was described, 100 instances of the logarithm of land 
values in the GAM were simulated (their back-transformed mean, 
95th and 5th percentiles are reported in Fig. 2).

Two important findings can be seen in Fig. 2, perhaps the 
most important is reported in panels.

(d), (e), and (f): these summarize the uncertainty of the 
E-Type estimates. The pattern of the coefficient of variation is, 
approximately, the reverse of the land value predictions (most 
clearly seen when compared with the E-Type prediction of panel 
(a)). When contrasted with the density of points (Fig. 1, panel 
(a)), there is also a clear association. However, the effect of the 
algorithm can be seen in that the yellow area of low coefficient 
of variation extends beyond the more urbanized area predicted 
by large land values (the darker blue and purple intervals of Fig. 
2, panel (a), which are also the areas with most sale listings in 
Fig. 1, panel (a)). The coefficient of variation mostly predicts 
standard deviations varying between 36 % and 65 % of the mean, 
suggesting adequately precise measurements (relatively low 
dispersion in the simulated instances); their distribution tends 
to be right skewed within this range (shown in the histogram of 
Fig. 2, panel (d)).
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Fig. 2. Conditional Gaussian Simulation of land value in the GAM (USD per square meter). (a) E-Type predic-
tion (cell-wise mean of simulated instances), (b) 95th percentile of simulated instances, (c) 5th percentile of 

simulated instances, (d) location-wise coefficient of variation histogram, (e) descriptive statistics of simulated 
predictions and data, (f) coefficient of variation map.

The second relevant finding of Fig. 2 corresponds to the 
interpretation of panels (a), (b), and (c): in effect, the E-Type 
prediction (of panel (a)) is the best estimate of land value; panels 
(b) and (c) represent higher and lower bound values for this 
prediction: the land value for 90 % of simulated instances was 
estimated to lie within the range for each location. An examination 
of this more detailed set of maps suggests uncertainties may be 
larger than what the overall measures (of validation, discussed 
and reported in TABLE I, and of the coefficient of variation) 
had suggested. By comparing location-wise, for most locations, 
the upper (95th percentile) or lower bound (5th percentile) shift 
one category. Given the values involved, this represents around 
double the back-transformed mean value.

It is also important to understand the quality of the 
predictions. TABLE I summarizes the validation exercise results. 
Following the methodological approach, 10 % of the lots data 

were reserved for validation. For these locations, predictions of 
land value were generated using (a) the E-Type prediction of 
the conditional Gaussian simulation (the location-wise mean 
of all instances) and (b) an ordinary kriging extrapolation, as 
benchmark. The error was calculated by subtracting the land 
value per square meter (of the data set) from the back-transformed 
predicted value. Examining their absolute values, in general, the 
error terms showed both models underestimated the actual land 
value.

As can be seen in TABLE I, the E-Type land value prediction 
is slightly worse than the ordinary kriging: all estimates of 
error of the E-Type prediction are somewhat larger than the 
corresponding value for ordinary kriging, as is the range is also 
smaller. The differences are very small, in general (at least an 
order of magnitude smaller than the error estimate). It is also 
worth pointing out that both models have produced very accurate 
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predictions: all mean and median error and RMSE estimates are 
all less than half of the variable mean (for the land value per 
square meter of the validation data set, which is reported in Fig. 2).

The predicted pattern of land values per square meter is 
shown in Fig. 2. The pattern coincides with theoretical expectations 
and indeed with previous, kriging-based analysis of land values 
in the GAM from [1]: land values are larger (shown in dark 
blue color) for the centers of San José and Heredia, and the 
centers of Alajuela and Cartago are also relatively larger than 
their surroundings. Furthermore, lower values are concentrated 
on the periphery of the region (rural areas) and the northern zones 
of Alajuela and Heredia tend to exhibit larger values than those 
of Cartago and San José.

The second objective of this paper, following the estimation 
of uncertainties, is to explore if these uncertainties respond 
to regularities in space. To do so, five factors that determine 
suitability for urban development (and, in consequence, are related 
to land price formation in urban markets) were considered: slope 
and elevation, and (Euclidean) distance to the CBD, to the nearest 
municipal center and to the nearest main road. For each factor, 
three groups of locations were created (except  for elevation, for 
which only two groups were defined) based on the factor value; 
group intervals were generally defined based on the variable 
histograms, although for slope, the group limits are related to 
statutory building requirements.

TABLE I
VALIDATION OF PREDICTION MODELS OF LAND 

PRICE (USD per square meter)

Error measure
Prediction model

Conditional Gaussian 
Simulation (E-Type)

Ordinary 
Kriging

Root Mean Square Error 149.4 127.7

Mean Absolute Error 110.7 84.3

Median Absolute Error 82.5 56.8

Range of Error -569.2 – 677.0 -437.3 – 765.1

TABLE II
KOLMOGOROV-SMIRNOV STATISTICS FOR 
DISTRIBUTION OF STANDARD DEVIATION 

FOR DEVELOPED PREDICTIONS GROUPED BY 
DETERMINANTS

Comparison D Statistic Prob.

Slope

G1: <30 % vs. G2:>30 % & <50 % 0.110 <0.01

G1: <30 % vs. G3:>50 % 0.137 <0.01

G2:>30 % & <50 % vs. G3:>50 % 0.117 <0.01

Elevation

G1: <1500 masl G2: >1500 masl 0.193 <0.01

Comparison D Statistic Prob.

Distance to CBD

 G1: <10 km vs. G2: >10 km & < 25 km 0.412 <0.01

G1: <10 km vs. G3: > 25 km 0.583 <0.01

G2: >10 km & < 25 km vs. G3: > 25 km 0.178 <0.01

Distance to nearest municipal center

G1: <2.5 km vs. G2: >2.5 km & < 7.5 km 0.364 <0.01

G1: <2.5 km vs. G3: > 7.5 km 0.362 <0.01

G2: >2.5 km & < 7.5 km vs. G3: > 7.5 km 0.120 <0.01

Distance to nearest main road

G1: <1 km vs. G2: >1 km & < 7.5 km 0.268 <0.01

G1: <1 km vs. G3: > 7.5 km 0.409 <0.01

G2: >1 km & < 7.5 km vs. G3: > 7.5 km 0.160 <0.01

The Kolmogorov-Smirnov test was used to explore whether 
the statistical distribution of standard deviation for each group was 
different from other groups for the same factor. These results are 
shown in TABLE II and, as should have been expected, all test 
statistics confirmed the distribution of data of one group is distinct 
from other groups. On the one hand, there are sufficient simulated 
locations (over 28000) for even small differences to be significant. 
On the other, the larger probability of urbanization associated 
with flatter zones with greater accessibility to urban centralities 
is also associated with both the point pattern of real estate sales 
listings [11] –i.e., the sampling density, a key determinant of 
uncertainty—and the land value itself.
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Fig. 3. Empirical cumulative distribution functions for standard deviation 
of simulated predictions (square of the log. of USD per square meter). Loca-

tions grouped by (a) slope, (b) Euclidean distance to CBD, (c) Euclidean 
distance to main roads, (d) elevation, and (e) Euclidean distance to nearest 

municipal center.

How each factor affects uncertainty (measured by the 
standard deviation of land value of the simulated instances) 
suggests urban areas have more diverse land values than zones less 
suitable for urban uses. Fig. 3 shows kernel smoothed empirical 
distribution densities for the location-wise standard deviation of 
simulated instances, grouped by the categories that were used 
in constructing TABLE II. The steeper locations (slopes greater 
than 50 %) have distinctly larger uncertainty (a sharper peak at 
higher value of the distribution) than other groups. This same 
pattern is repeated for all variables: greater accessibilities to urban 
centralities (the CBD, the nearest municipal center) or the regional 
transportation network (main roads), represented by the pink 
density function estimate, have all lower peaks at the lower end of 
the standard deviation values, suggesting more dispersed values. 
In general, the intermediate group of factor values (shown in light 
green, Fig. 3) presents intermediate levels of uncertainty and the 
group of larger factor values (light blue, Fig. 3), lower levels of 

uncertainty (the density functions for intermediate groups are less 
right skewed than those for the larger groups of factor values).

Fig. 4. Spatial patterns of determinants of uncertainty. (a) Slope, (b) Euclid-
ean distance to CBD, (c) Euclidean distance to main roads, (d) elevation, 

and (e) Euclidean distance to nearest municipal center.

4. SYNTHESIS AND DISCUSSION

The analysis of land value patterns extended previous results 
and it has provided further insights, which have contributed 
to identify both needs for further study and opportunities for 
applications to public policy.

The E-Type prediction from the conditional Gaussian 
simulation was found to marginally improve on ordinary kriging 
methods. The conditional Gaussian simulation produced, for 
validation data, slightly better error measures (RMSE, mean, 
median, and range of error) than ordinary kriging (in the analysis 
of variations in  kriging methods conducted by [1], the different 
methods tested also resulted in very similar error levels for 
validation). This result is indeed not surprising, as the simulations 
are conditional on the variogram, and should more iterations had 
been simulated, the difference would have likely been smaller. 
On the other hand, in so far as improvements were generated by 
the simulations, they were likely related to the improvement of 
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over-smoothing limitations in the kriging predictions [5]; but 
even this feature could have likely been incorporated into the 
kriging by a careful consideration on the number of neighboring 
points determining a prediction. Previous exercises of kriging 
models did find limitations due to this over-smoothing problem 
that seem to have been improved on by the sequential Gaussian 
simulation method (in particular, by better modeling the local 
changes at the peri-urban interface of the region); further work 
on this issue seems promising.

A distinct advantage of conditional Gaussian simulation is 
the spatially explicit measures of uncertainty that can be used 
to explore the limitations of the prediction and to more easily 
estimate exceedance probabilities [13]; this feature is especially 
useful for land value maps in applied scenarios (for example, when 
the map predicts land values claimed to be too large by a land 
owner, this claim can be easily tested). Further work is required 
on this issue (previous comparisons of models estimated from this 
data and other data sources suggest systematic underestimation of 
land values, particularly for taxation purposes [3]; while outdated 
assessments are the simplest explanation, it is also possible that 
data sources for the models reported in this paper may be also 
partially skewing the results).

It is further worth noting that the literature has detected over-
smoothing problems associated with deterministic methods such as 
ordinary kriging that can be overcome with simulation. The current 
focus of this study was not the comparison of conditional Gaussian 
simulation with other extrapolation predictions; however, this is 
regarded as a potential area for further investigation.

The estimated uncertainty patterns are inversely related 
to the predicted land value. A very clear and negative spatial 
association was identified between the E-Type prediction of  
land values per square meter and its standard deviation: in the 
urban central area of the GAM, the highest land values (which 
coincides both with previous analysis [1] and with theoretical 
expectations from urban economics) and lowest uncertainties 
were observed. This finding coincides with previous analysis 
of the point pattern of real estate listings and its relation to the 
determinants of suitability for urban land uses [11].

Indeed, the estimated uncertainty was found to decrease with 
characteristics that identify suitability for urban land use (and thus 
higher land values). The flatter areas of the GAM, which are also 
closer to urban centralities (the CBD, main municipal centers), 
showed much less uncertainty (smaller location-wise standard 
deviation) than zones further away and at higher elevations and 
steeper slopes. Therefore, the data set and modeling efforts appear 
to demonstrate efficiency when predicting urban land values but 
also present clear limitations if applied to rural land uses of the 
urban periphery.

Despite its importance, hardly any previous case study 
reports the use of simulation to understand uncertainty introduced 
by interpolation into land or property value predictions (unlike 
physical properties of soils, which are derived from similar point 
data and for which such analysis seems common). Uncertainty has 
been reported as variance of kriging estimates [1] or verification 

through out-of-sample prediction [14], in relation to the mean 
estimate from this indicator. While theoretical recognition of the 
possibility to estimate errors and uncertainty in the context of 
land valuation has been acknowledged [15], actual practice has 
centered on the accuracy of the mean prediction rather than on 
explaining its variance. Uncertainty is important for valuation, 
especially when practical applications are performed (such as tax 
assessments and potential challenges to these).

In conclusion, the analysis of uncertainties may be critical 
for improving urban and regional studies (e.g., the impact of 
new infrastructure or of land use regulations) and land value 
assessments for tax policy. In this regard, the methods presented 
have increased robustness (relative to very local estimates) 
because predictions relatively far away from locations with known 
values may still benefit from their price information via the spatial 
dependence encoded in the semivariogram. More importantly, the 
estimates of uncertainty permit the assessment of the prediction 
for properties that have not been recently sold in the market (and 
thus include an inherent check of the prediction which is absent 
in isolated tax assessment exercises).
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