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1. INTRODUCTION

This project consists of calibrating a load cell
using a neural network.  The load cell was made
with strain gages installed on a cantilever alumi-
num beam.   The strain gages were connected to a
circuit, called a Wheatstone bridge, and the out-
put signal of the bridge was amplified and collec-
ted using an analog to digital converter, which
was controlled by a Basic Stamp microprocessor.
The microprocessor transmits the signal by infra-
red means to a computer that receives it via its se-
rial port.  This weighing system works well, but
needs some type of calibration because of inhe-
rent non-linearities and variation of reference vol-
tages.  These are some of the main reasons why a
neural network has been proposed to do such ca-
libration.  Also, since a computer is being used to
collect and display the final result, it would be re-
latively simple to implement it.  In essence, for
this project, the neural network's most important
purpose is to be able to determine an accurate
weight value, no mattering where in the load cell
range it is, and under different values of its inputs.
This calibration problem seems to be a good ap-
plication for a neural network because it requires
a learning adaptable process. 

2. BACKGROUND

An Artificial Neural Network (ANN) is a conglo-
merate of computational units, or neurons, orga-
nized in layers, and in its simplest form consists
of an input layer, single or multiple middle la-
yers, and an output layer.  An important charac-
teristic of an ANN is that all the neurons can be
trained, under supervised or unsupervised lear-
ning, in an inter-dependent way, to associate,
learn, and/or classify information.

After performing some research, it was determi-
ned that some previous works have been comple-
ted in similar applications of neural networks to
calibrate, linearize, estimate, or fit data obtained
from the behavior of a sensor or system.  For
example, a three-layer artificial neural network
(ANN) was used to calibrate a displacement sen-
sor 1,2.   The results obtained were compared to
curve fitting results, and it was concluded that an
ANN is the best candidate to do this kind of task.
Also, it was determined that for this kind of appli-
cation relatively few elements are required and
the implementation is relatively simple.  As anot-
her example, an ANN was used to linearize a ther-
mistor behavior3.  The purpose of this application
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was to linearize the input-output relationship of a
thermistor, and an ANN with two hidden layers
was used.  In addition, another application of an
ANN, related to this project, is the calibration of
the force/torque sensors used by a robot to esti-
mate the weight of an unknown payload in order
to applied the correct grasping force to pick up
an object, avoiding slippage or damage of it 4.
One more case similar to this project was the use
of a multi-layered ANN to calibrate a high-pres-
sure measuring system with non-monotonic be-
havior and greatly influenced by temperature 5.
Better quality calibration than the one obtained
with the spline-based method of calibration was
obtained, and even for pressure reconstruction
the measurement of temperature was not neces-
sary 5.  Finally, another example of the use of an
ANN for measurement calibration verification
was done in power plants 6.  In power plants, as
in many other applications, the instruments are
re-calibrated on a periodic basis, and an ANN
was used to predict the reading of an instrument
using readings of other dissimilar instruments.  I
this power plant application of a neural network
it was considered that a type of on-line parame-
ter identification and model-based observer met-
hod was developed6.

From those experiences, obtained with previous
similar works, it was concluded that this project
can accurately be solved using an ANN adequa-
tely trained to learn and estimate the related non-
linear information provided for training.  An ex-
tension of this project would be possible to many
other similar calibration applications.  After fa-
cing some problems with calibration of equip-
ment because of non-linearities and variations, it
is possible that while some equipment is opera-
ting “properly”, with good sensitivity and repea-
tability, but not well calibrated, it could continue
being used without trying to fix it or without get-
ting rid of it.  However, instead of that, a good
signal processing would be required to compen-
sate for the “bad” calibration, and in this particu-
lar application a neural network will do that job.

3. DESCRIPTION OF THE PROBLEM

This project consists of calibrating a load cell, ma-
de with strain gages installed on an aluminum can-
tilever beam with rectangular cross sectional area.
One of the strain gages is on the top surface and the
other at the bottom surface of the beam, which is
loaded in bending.  Figure 1.  shows the load, P, the
cantilever beam and one of the strain gages.  The
calibration is to be done using a neural network;
therefore, the main objective is to design and train
a neural network to correctly estimate the weight,
or load P, applied to the load cell.  A set of training
cases of the known behavior of the system, some
obtained experimentally and other obtained from
the system's mathematical model, were used to ins-
truct the neural network.

Notice that when one of the gages is in tension
the other one is in compression; however, the
strain of each gage is expected to have the same

magnitude.   These strain gages, RT and RC, are
connected to a Wheatstone bridge, as in Figure 2.
The bridge is completed by adding two resistors,
R, with nominal value equal to that of the strain
gages.  The reference, or input, voltage of the
Wheatstone bridge is Vi, and it is one of the in-
puts to the neural network.

Figure 1.  Cantilever beam as a load cell
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The bridge's output voltage, Vo, depends on the
deformation of the strain gages and on the input
voltage to the bridge, Vi.

An electronic circuit has been designed and
implemented to condition and process the signal
output from the bridge.   First, there is an ampli-
fier, with a gain, Kamp, in order to make the sig-
nal more manageable by other devices.  The
amplifier's gain, Kamp, is another of the inputs to
the neural network because it is a variable quan-
tity that could be adjusted and has to be measured
from time to time, just to verify its value.  This
gain is supposed to not change too much; but,

when it changes, it has an important effect on the
results.  Following the amplifier there is an 8-bit
analogic to digital converter (8-bit A/D) which
converts the amplified voltage to a 0 to 255 value
(one byte).  This digitized value is another of the
inputs to the neural network. 

Figure 3 presents a more complete idea of the
weighing system.  In this figure, the neural net-
work's inputs and output can be identified.  The
first input to the network is the amplification value,
which is called Kamp; the second input is the
Wheatstone Bridge's reference voltage, Vi; and the
third input is the digitized value, or binary value,
that is proportional to the amplifier's output volt-
age.  The amplifier's output is basically the
Wheatstone bridge's output voltage, Vo, multiplied
by Kamp.  This binary value was obtained by digi-
tizing the amplifier's output voltage using an 8-bit
A/D converter driven by the Basic Stamp proces-
sor. The processor sends the information serially
via infrared to a computer that is at a certain dis-
tance, 3 or 4 meters, from the measuring system.
After that, the computer makes use of the trained
neural network, and based on the three inputs per-
forms the computation to estimate the weight
applied to the load cell.  

Figure 2. Wheatstone bridge connections

Figure 3. Load cell, signal acquisition and processing.
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In summary, the Wheatstone bridge converts the
weight acting on the load cell to a voltage, it is
amplified and after that it is digitized.  Theoreti-
cally, it is expected that the digitized value be
proportional to the product of the weight applied
to the load cell, the amplification value, and the
Wheatstone bridge's reference voltage.  

4. NEURAL NETWORK DESCRIPTION

The weighing system described above is made of
several components, each introducing some un-
certainty and error, and in general the final result,
which is the weight being measured, is difficult
to determine with the same accuracy all over the
load cell's operating range.  This occurs because
of variations of the reference voltage applied to
the Wheatstone bridge, variations in the ampli-
fier's gain, and also to other nonlinear effects that
are inherent to the system.  

Inputs to the neural network:

There are three important parameters that were
selected to be the inputs to the neural networks:

1- Amplification:  Kamp

2- Input Voltage to the Wheatstone bridge: Vi

3- Binary information serially transmitted: Bi-
nary

The inputs to the ANN have the form shown in
Eq. (1):

(1)

Notice that the input vector is a 5x1 in size, and
its last two terms are a product combination of
the first three terms; therefore, only the first th-
ree inputs are required and the programmed code
takes care of adding the other two terms, as well
as normalizing the vectors.  These two dependent
terms were required because the results obtained
with only the first three terms were not satisfac-
tory, and also because, theoretically, it is expec-
ted that the output from the ANN be proportional
to the mutual product of the first three input
terms. The input vectors are normalized by divi-
ding each one by its magnitude.

Outputs from the neural network:

The network has a single output, which is the va-
lue of the weight applied to the load cell, and that
is a function of the three inputs:

(2)

The output training values of the neural network
were linearly scaled to values between 0 and 1.
As it was later determined the function in Eq.(2)
is a combination of addition and multiplication
of the three inputs.  The whole purpose of the
neural network could now be seen as the deter-
mination of the best function to map the weight
surface as a function of the inputs. 

Training examples:

Training examples were experimentally determi-
ned with several different known weights plus
the offset value obtained when no weight is ap-
plied to the load cell.  These weights were com-
bined with four different reference voltages, Vi,
applied to the Wheatstone bridge, and several
amplification gains, Kamp, giving a total of 154
training input-output pairs, as shown in Table 1.
All of these exemplars were used as an epoch to
train the network. 
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Test Samples:

After performing the training, test input cases, ob-
tained by interpolation in Table 1, were applied to
the network to determine its performance.  These
test samples are presented in Table 2.

In the same way as it was done for the input trai-
ning examples, any input vector presented to the
neural network requires two additional terms as in
Eq. (1) and after that it must be normalized.  

Neural Network Architecture and Training:

Since sigmoidal transfer functions were chosen for
the middle layers and a linear transfer function was
used in the output layer, the training examples we-
re normalized to have proper values to work with
these transfer functions. 

Training was performed using backpropagation
with the Levenberg-Marquardt  (BPLM) algo-
rithm as numerical optimization technique for

relatively fast convergence7.  The advantage of
the Levenberg-Marquardt technique is that the
results always go in the right direction, as long as
that direction exists, and that is, toward the mini-
mum of the error surface. On the other hand, the
most significant disadvantage of this technique is
the computation of the modified pseudo-inverse
of the Jacobian, (JTJ + µkI)

-1, for every batch ite-
ration.  Where J is the Jacobian, and µk is a varia-
ble coefficient that is changed to adapt the algo-
rithm to the progress accomplished after every
iteration.  Sometimes this matrix becomes too
big and computing the inverse might be too com-
plicated.  For example, for a 3-9-1 network, this
matrix is of size 46x46, and for a 3-5-3-1, this
matrix is 42x42.  Fortunately, nowadays there are
powerful software tools and computers that per-
form this computation in incredible short times. 

The back propagation algorithm with momentum
and variable learning rate, VLBP, was used to
solve the problem but it was difficult to control
mainly because of the required adjustments of

Table 1. Training examples

Table 2.Test Samples
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parameters, and because of the convergence to
stationary points that are not the desired mini-
mum7.  The VLBP technique could work to sol-
ve this problem, but most of the efforts to find a
solution to this problem were focused on the Le-
venberg-Marquardt algorithm because of the rea-
son given above.    

The data in Table 1 was presented to the network
input after input in a sequence row by row and
the total squared error was computed per each
epoch, and this error was used to start the back-
propagation algorithm. 

5. RESULTS

A small number of neurons, 4 and 5, were used
at first in a single middle layer to train the neural
network. However, progressively, to get familiar
with the network, some other tests were perfor-
med using more, or fewer, neurons, as well as
more middle layers as needed or just to deter-
mine what kind of results were obtained.  Whi-
le training was being performed, the results
were displayed every hundred epochs, by plot-
ting three graphs in a figure. The graph on the
top of the figure shows convergence of the net-
work results to the training examples, the graph
in the middle presents the squared error per
epoch, and the bottom graph shows the conver-
gence of the behavior of the network to the test
samples.  

Most Important Result:

The most important result was obtained with a
5-3-1 neural network with sigmoidal middle la-
yer transfer functions and linear transfer func-
tion for the output layer.  Figure 4. presents the
results after 5 400 epochs, but only the last 300
epochs are shown in the figure. 

The minimum squared error per epoch was
0,025, as can be seen in the middle graph, and
after this point the Jacobian matrix started get-
ting close to be singular, and the program could
not compute its pseudo-inverse.  

It was determined that the training examples as
well as the test examples were well approxima-
ted.  The top graph of Figure 4. represents the
convergence of the neural network results to
the training examples, and columns 2 and 12 of
Table 1. were used for this purpose. The hori-
zontal axis of this graph represents the input
vector according to its position in columns 2
and 12 of Table 1.  The “x” marks represent the
expected weight value, that is the values in co-
lumn 1 of Table 1.  Close attention to the top
graph reveals that there are two curves, as ex-
pected, and since they are converging to the sa-
me values of weights in some parts of the graph
it seems that there is only one curve. Moreover,
the bottom graph presents the results obtained
using the test samples from Table 2. The hori-
zontal axis of this graph represents the input

Figure 4. Neural network 5-3-1.
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vector according to its position in the columns
of Table 2.  The “x” marks represent the expec-
ted weight value associated with the values of
row 5 of Table 2. Again, the neural network ge-
nerates an acceptable approximation of the test
samples, with errors under 6,4 % for all of the
test points, as shown in Table 3.  This kind of
error is acceptable but there is always a desired
to reduce it more.

The matrices of weights and biases obtained for
this 5-3-1 network are presented next: 

There is some similarity between rows 1 and 2 of
the weight and bias matrices for layer 1, which
are W1 and b1.  This might mean that there is a
redundant function of a neuron in such a layer;

therefore, fewer neurons in that layer could gene-
rate similar results.   Then, the following step ta-
ken was to decrease the number of neuron in the
middle layer to 2 instead of 3.  However, the re-
sults obtained with this 5-3-1 neural network are
difficult to improve due to its good results during
training as well as during interpolation. 

Second Most Important Result:

The second important result obtained is presen-
ted in Figure  5.  A 5-2-1 neural network with

sigmoidal middle layer transfer functions and li-
near transfer function in the output layer was trai-
ned for 3 500 epochs, and the figure presents the
last 500 epochs.

NN Result Expected Result % Error

-0,088 0
-0,010 0
1,15 1,10 5,2
1,07 1,10 -1,9
2,04 2,07 -1,1
3,17 3,10 2,3
4,08 4,14 -1,2
4,98 5,11 -2,5
1,32 1,39 -4,9

1,61 1,72 -6,4

Table 3. Neural network results to the test samples, for a 5-3-1.
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In this case, the minimum squared error per
epoch that was obtained was 0,054, as can be
seen in the middle graph.   The top graph of Fi-
gure 5.  shows a slightly difference in the training
convergence of the neural network results for co-
lumns 2 and 12 of Table 1. The bottom graph of
Figure 5. presents the results obtained using the
test samples from Table 2.  The network genera-
tes acceptable results, and it seems to be interpo-
lating correctly, but there are larger errors com-
pared to the results obtained with a 5-3-1 net-
work.  Table 4 presents a comparison of the ex-

pected results for the test samples and the results
obtained with the 5-2-1 network.  

Comparing results in Table 3 with the ones in Ta-
ble 4, it is determined that, for almost all the test
samples, the percentage of error is larger in Table
4.  However, a good point in favor of the 5-2-1
network is that the error is banded within -6 %
and 4,7 %, while for the 5-3-1 it is banded within
-6,4 % and 5,2 %.  A critical result of the 5-2-1
network is the one at test sample 2, which seem
to be too far from the desired result.

Figure 5. Neural network 5-2-1.

NN Result Expected Result % Error

0,05 0

0,28 0

1,15 1,10 4,7

1,06 1,10 -3,8

2,04 2,07 -1,4

3,19 3,10 3,0

4,07 4,14 -1,6

4,83 5,11 -5,5

1,30 1,39 -6,0

1,64 1,72 -4,4

Table 4. Neural network results to the test samples, for a 5-2-1.
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The matrices of weights and biases obtained for
this 5-2-1 network are presented next:

Third Result:

Another important result is presented in Figure
6.  A 5-1-1 neural network with sigmoidal mid-
dle layer transfer functions and linear transfer
for the output layer was trained, and Figure 6.
presents the results after 1 000 epochs.

In this case, the minimum squared error that was
obtained was 0,98, as can be seen in the middle
graph.   The top graph of Figure 6 shows great dif-
ference in the training convergence of the neural
network results for columns 2 and 12 of Table 1.
The bottom graph of Figure 5. presents the results
obtained using the test samples from Table 2.  The
network seems to be interpolating with a correct
tendency but the errors are large.  The training

examples are mapped with large error, compared to
the two previous 5-3-1 and 5-2-1 networks. 

6. CONCLUSIONS

This project consisted of designing, training, and
testing a neural network to calibrate a load cell
made with strain gages installed on an aluminum
beam.   Two strain gages and two external resistors
formed a Wheatstone bridge, and the output signal
from the bridge was first amplified and later
acquired using an analog to digital converter,
which was controlled by a Basic Stamp micro-
processor. The inputs to the neural network were
the reference voltage applied to the Wheatstone
bridge, the amplification gain applied to the
Wheatstone bridge's output voltage, and the digi-
tized voltage value acquired by a microprocessor.
The network's output was the computed value of
the weight being applied to the load cell.

Figure 6. Neural network 5-1-1.
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The network's main objective was learning an
accurate input-output relationship of the vari-
ables in the load cell system and it was achieved
using and a 5-3-1 configuration.  The backprop-
agation Levenberg-Marquardt algorithm was
used to train the network and a minimum squared
error per epoch of 0,025 was obtained as the best
result for the 154 input-output exemplars.  The
network was tested and errors under 6 % were
obtained for all the test samples.   This magni-
tude of error is satisfactory for this application
considering that some noise was on purpose
included in some of the training data, and also
taking into account that the test data was
obtained by interpolation from the training data.
It is possible to do a more strict control and
selection of the training and testing data in order
to obtain less error in the testing results.  More
training data might be added and maybe some
training data might be removed to optimize train-
ing while still getting satisfactory results.
Fortunately, with the BPLM programmed code
for this project, training of the neural network
takes from 20 to 30 minutes using a computer
with a 677 MHz processor, and a faster comput-
er would perform the training in less time.  In
general, some additional adjustments could be
made to try to improve results, like changing the
transfer functions, or adding new training data in
regions where better accuracy is desired.  

Finally, based on the adequate results obtained in
this project, it is concluded that the theory and
methods of neural networks offer a good option
to calibrate, or obtain a satisfactory input-output
relationship for an instrument, equipment, or
system that operate under variable input condi-
tions.  The flexibility of the neural network is
such that in whichever other projects, or applica-
tions, there is always the possibility for changes,
new ideas, and modifications that could be incor-
porated to the network to achieve the objectives.
In this project, a 5-3-1 neural network accom-
plished the main objective of determining an
accurate weight value, no mattering where in the
load cell range it was, and based on different val-
ues of the neural network's inputs.   
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