					http://www.revistaingenieria.ii	jii.ucr.ac.cr w.ucr.ac.cr
	Ingeniería					1409-2441
V/ 1	Revista Semestral de la Universidad de Costa Rica	F // 1000/	Ē		1011	0
 Vol.	. 16 (1)	Ene/Jul 2006	iero (IVEN		
	CONTENIDO		Núm			
	Artículos			Revista de	la Universidad de Costa	\mathcal{K}
1.	La compensación serie controlada y el relé de impedancia Araya, Eddie.			ENERO/J	ULIO 2000 - VOLOMEN 10 - INU	$\operatorname{Hero}(1)$
2.	Estudio de los factores que afectan la hidrólisis enzimática y el proceso fermentativo para la producción de alcohol a partir de papa (<i>Solanum tuberosum</i>)	27-37	006			
3.	Reducción de la radiación electromagnética en las líneas de alta tensión Araya, Eddie.		ulio 2			
4	Gravity signatures of the Gibraltar Strait Bakkali, Saad; Amrani, Mahacine.		ro / J			
.5	Influencia de la distancia epicentral sobre los factores de reducción por ductilidad Vielma, Juan Carlos; Lobo,William; Rivero, Pedro.	59-79	Ene			
6.	Diseño no lineal del AVR de un generador sincrónico Araya, Eddie.					
7.	Despacho óptimo de MVAr en sistemas de potencia Acuña, Marco; Araya, Eddie.		(0)			
8.	El concepto de calidad: un marco conceptual Herrera, Rodolfo.	105-119	nen 16	36.3	Station Station	
9.	Nota técnica Aspectos teóricos y aplicaciones de la operación unitaria de cristalización	121-131	Volur	36.2 Based and a second	AL REPORT	
	Aguilar, Noé; Román, Carlos.				TACETA DETROIT DE GIBRAL TAR	
	Normas Normas para la presentación de artículos a la Revista Ingeniería	133-138	7	535. 71733. 71733. 717331111111111111		
EDITC	DRIAL DE LA UNIVERSIDAD DE COSTA RICA		REVISTA INGENIERÍA	35.8 35.7 35.7 4 35.7 4 35.7 4 5.8 4 7 5.8 5.7 4 5.8 5.7 4 5.8 5.7 4 5.8 5.7 4 5.8 5.8 5.7 4 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	-5.8 -5.6 -5.4 LONGTUDE WEST IN DEGREE	

INFLUENCIA DE LA DISTANCIA EPICENTRAL SOBRE LOS FACTORES DE REDUCCIÓN POR DUCTILIDAD

Juan Carlos Vielma Pérez William Lobo Quintero Pedro Rivero Rivero

Resumen

El análisis sísmico presente en la mayoría de las normativas, permite la determinación de las fuerzas probables mediante espectros de diseño que contienen la información sobre el riesgo sísmico de una zona determinada. Los espectros contienen la respuesta máxima elástica de sistemas de un grado de libertad, que es reducida mediante la aplicación de factores de reducción de respuesta (R), para modelar el comportamiento inelástico de las estructuras. Los factores de reducción de respuesta (R) dependen de la capacidad disipativa de las estructuras, por lo que generalmente se les relaciona con la ductilidad global (μ); sin embargo, estudios recientes han demostrado que el factor de reducción de respuesta depende de múltiples factores, entre los cuales el factor de reducción por ductilidad (R_{μ}) es de especial importancia.

En esta investigación se determinan los factores de reducción por ductilidad (R_{μ}) considerando el comportamiento no lineal del suelo y de la estructura, proponiendo con los resultados espectros basados en la distancia epicentral, tipo de suelo, tipo estructural y ductilidad global de la estructura.

Palabras clave: factor de reducción de respuesta, factor de reducción por ductilidad, comportamiento no lineal, disipación histerética, disipación viscosa, distancia epicentral.

Abstract

The seismic analysis present in seismic codes allows the determination of design forces by means of elastic spectra which contain information about the seismic risk of a certain zone. Design spectra contain the maximum elastic response of systems of a degree of freedom, which is reduced by means of response reduction factors, to model inelastic behaviour of the structures. The response reduction factors depend on the dissipative capacity of the structures, reason why it is generally related to the global ductility, nevertheless, recent studies to them have demonstrated that the response reduction factors depends on multiple factors, between which the ductility based reduction factor is of special importance. In the present study nonlinear behaviour of soil and structure is analyzed in order to determine the factors of ductility based reduction factor, proposing with the results spectra based on the epicentral distance, type of soil, structural type and global ductility of the structure.

Keywords: response reduction factor, ductility based factor, non linear behaviour, hysteretic dissipation, viscous dissipation, epicentral distance.

Recibido: 16 de septiembre del 2005 · Aprobado: 26 de enero del 2006

1. INTRODUCCIÓN

La incursión de las estructuras en el comportamiento inelástico, sobre todo cuando son sometidas a fuerzas sísmicas que sobrepasan el umbral de comportamiento elástico, se aplica en las normativas mediante un procedimiento espectral que permite diseñar para un comportamiento inelástico equivalente, sobre la base del diseño elástico. La razón es que el análisis inelástico de las estructuras hasta la fecha es impracticable por los costos computacionales que acarrean.

En la Figura 1 se ilustra el procedimiento equivalente de determinación de fuerzas sísmicas de diseño, partiendo de los resultados del comportamiento elástico. Por un lado, se tiene la curva de capacidad correspondiente a la respuesta estática no lineal (push-over), típica de un edificio en la que se grafica el cortante basal contra los desplazamientos del último nivel del edificio, idealizada mediante dos ramas de comportamiento: una rama creciente elástica con una pendiente igual a la correspondiente al valor del 75 % del cortante basal cedente (tramo O-C), para la cual ocurre la aparición de la primera rótula y la respuesta comienza a ser no-lineal, y otra rama para la cual la estructura presenta incrementos en los desplazamientos sin que la fuerza cortante presente incrementos significativos, hasta alcanzar el colapso (tramo C-D). Si la estructura no incursionase en comportamiento plástico, la respuesta se correspondería con la línea de pendiente uniforme e igual a la rigidez inicial idealizada del edificio (tramo O-A).

La relación de ordenadas representa la reducción del cortante de diseño que debe soportar la estructura, permitiendo la incursión dentro del comportamiento plástico. Esta relación de ordenadas es la que define el factor de reducción basado en ductilidad R_{u} :

$$R_{\mu} = \frac{V_{e}}{V_{y}} \tag{1}$$

Donde V_e es el cortante de la estructura bajo comportamiento elástico y V_y es el cortante que corresponde a comportamiento inelástico, para una determinada ductilidad global de la estructura μ .

La estructura al ser diseñada para poder disipar energía, debe cumplir con requisitos sismorresistentes de armado que, aunados a la factoración de fuerzas actuantes y minoración de resistencia, a la adopción de secciones de múltiplos decimales, al cumplimiento de requisitos de cuantías mínimas y a la redundancia estructural, terminan suministrando una capacidad resistente adicional, que corresponde a la respuesta elástica reducida mediante el factor de reducción de respuesta R, (ver Figura 1). A la relación que existe entre el cortante de diseño V_d

Figura 1. Representación de la respuesta estática no lineal de una estructura. Fuente: (Elnashai & Mwafi, 2002).

y el cortante real V_y que representa la capacidad de la estructura se le conoce como factor de sobrerresistencia Ω_d , cuya determinación está fuera de los alcances de este trabajo.

$$\Omega_{\rm d} = \frac{\rm V_y}{\rm V_d} \tag{2}$$

2. METODOLOGÍA APLICADA

En esta investigación se calculan los factores de reducción por ductilidad R_{μ} mediante la relación entre las ordenadas de los espectros de respuesta elástico y la de los espectros de respuesta inelásticos, obtenidos de sistemas de un grado de libertad como el que se muestra en la Figura 2, sometidos a acelerogramas obtenidos mediante la respuesta en superficie de diferentes tipos de suelos.

2.1 Comportamiento no lineal del suelo

La respuesta en superficie (aceleraciones amplificadas por los estratos del suelo) se obtiene a partir de cinco registros básicos obtenidos en roca, con distancias epicentrales representativas de registros de fuente cercana (menor a 20 km), intermedia (entre 20 km y 150 km) y lejana (mayor a 300 km), en el Cuadro 1 se muestran los registros en roca con sus correspondientes valores.

Figura 2. Sistema de un grado de libertad sometido a carga dinámica. Fuente: (Vielma et al., 2004)

La respuesta en superficie para cada uno de los registros se obtiene al considerar el comportamiento no lineal del suelo modelado mediante el programa WAVES (Hart & Wilson, 1989), que incorpora el modelo histerético de Ramberg y Osgood (1943), cuyos parámetros se han calibrado mediante las fórmulas unificadas de Ishibashi y Zhang (1992).

Los tipos de suelos considerados en la investigación se muestran en el Cuadro 2. La clasificación de la respuesta en superficie se realiza mediante el tipo de suelo, caracterizado

Sismo	Estación	Fecha	Componente	Distancia epicentral (km)	Aceleración máxima (cm/s ²)	Suelo
Kobe	Kobe, J. M. A.	17/01/1995	N-S	3,40	1067,30	Roca
Cape Mendocino	Cape Mendocino	25/04/1992	N-S	15,00	1019,00	Roca
Michoacán	Caleta de Campos	19/09/1985	N-E	21,00	138,49	Roca
Miyagi Oki	Ofunato-Bochi	12/06/1978	N-E	116,00	206,70	Roca
Michoacán	Ocotito	19/09/1985	S-E	337,00	50,10	Roca

Cuadro 1. Registros en roca utilizados en el cálculo de la respuesta en superficie.

Fuente: (Vielma, 2003)

			Propiedades	s elásticas del suelo			
Descripción del material	Velocidad de la onda s Vs (m/s)	Coeficiente de Poisson (adimensional)	Peso específico (kg/m ³)	Módulo de rigidez al corte Gmax (kg/cm ²)	Módulo de Young E (kg/cm ²)	Cohesión C (kg/cm ²)	Ángulo de fricción
Roca medianamente sana, con familias de diaclasas	1000	0,2	2 400	24 465	58 716	9	40
Roca fisurada con muchas familias de diaclasas	700	0,25	2 200	10 989	27 472	3	30
Suelo granular denso a muy denso	500	0,26	1 800	4587	11 560	0	40
Suelo arcillo-arenoso rígido a muy rígido (IP=20)	400	0,25	1 800	2936	7 339	1,5	20
Suelo granular medio denso	300	0,8	1 800	1651	4 228	0	38
Suelo granular medio denso	250	0,3	1 800	1147	2 982	0	35
Suelo arcillo arenoso medio rígido (IP=40)	250	0,3	1 800	1147	2 982	0,8	20
Suelo granular medio denso	200	0,32	1 800	734	1 938	0	32
Suelo cohesivo blando (IP=60)	150	0,4	1 800	413	1 156	0.5	0
Suelo granular suelto	100	0,35	1 600	163	440	0	27
Suelo cohesivo muy blando (IP=60)	100	0,45	1 600	163	473	0,2	0
Suelo granular muy suelto	70	0,36	1 400	70	190	0	25

Fuente: (Rivero, 1996); (Rivero & Lobo, 1996)

Cuadro 2. Características geotécnicas de los suelos.

Proniedades elásticas

		Profundi	dad (m)		
Tipo de suelo	Roca blanda	Muy duro	Duro	Medio duro	Blando
S1	10,20	10, 20	10		
S2	30, 40, 50, 60, 70	30, 40, 50	20, 30, 40	10, 20, 30, 40, 50	10
S 3		60, 70	50, 60, 70	60, 70	20, 30, 40, 50, 60, 70
S4				60, 70	20, 30, 40, 50, 60, 70
		Fuente: (Vie	lma, 2003)		

Cuadro 3. Clasificación de la respuesta en superficie.

por la velocidad de onda de corte y la profundidad de los estratos considerados (entre 10 m y 70 m), permitiendo clasificar las respuestas conforme a las formas espectrales de la normativa Covenin 1756-98 (Comisión de normas de estructuras para edificaciones, 2001) (ver Cuadro3). Así se obtiene un total de ciento ochenta acelerogramas clasificados en cuatro grupos de suelos que comprende a los suelos muy rígidos (suelos S1), suelos duros o densos (suelos S2), suelos medio densos (suelos S3) hasta suelos muy blandos o sueltos (suelos S4).

2.2. Comportamiento no lineal de estructura

En la investigación se han considerado cuatro tipos estructurales (ver Figura 3), que son los que usualmente se encuentran en el diseño de estructuras sismorresistentes y para los que existen valores normativos de factores de reducción de respuesta R. La respuesta no lineal bajo cargas cíclicas de la estructura, se ha modelado con el Programa NSPECTRA (Reinhorn et al., 1998). Este programa permite el análisis no lineal de las estructuras con la

Figura 3. Tipos estructurales analizados. Fuente: (Vielma, 2003)

incorporación del modelo histerético suavizado, que posibilita ajustar las características de la respuesta de cada tipo estructural mediante parámetros obtenidos de ensayos realizados al aplicar cargas cíclicas a pórticos diseñados conforme a las prescripciones sismorresistentes de las normativas.

Los cálculos se realizaron para obtener los espectros de respuesta para los diferentes niveles de ductilidad global de las estructuras, la normativa Covenin 1756-98 (Comisión de normas de estructuras para edificaciones, 2001) prescribe tres niveles de ductilidad global que dependen del tipo de estructura y del nivel de diseño, correspondiendo el ND3 a estructuras diseñadas para permitir disipación de energía bajo sismos fuertes, el ND2 a estructuras diseñadas con detallado sismorresistente intermedio y el ND1 que corresponde al diseño de estructuras sin requerimientos sismorresistentes especiales. Los valores de μ se muestran en el Cuadro 4.

postcedente, entendido como una fracción de la rigidez elástica inicial y el segundo, permite reproducir una transición suavizada entre la rama elástica y la rama plástica, tal como ocurre en los casos de elasticidad no lineal.

b) El comportamiento histerético degradado acomoda la respuesta a la evolución que va sufriendo en los ciclos sucesivos. Esto se logra combinando dos tipos diferentes de degradación:

b.1. Degradación de la rigidez: el modelo adopta la regla de pívot propuesto por Park et al. (1984), la cual permite controlar el grado de degradación de rigidez de ciclos sucesivos mediante la utilización de un parámetro único α , el cual escala el valor sobre el eje de las ordenadas hacia el cual convergen las ramas de descarga, permitiendo así la pérdida de la rigidez, a medida que se incrementa la ductilidad. La rigidez actualizada se obtiene de la expresión (3).

Cuadro 4. Valores de µ utilizados en cálculo de los espectros de respuesta de la Norma Covenin 1756-98.

Tipo estructural	ND1	ND2	ND3
Pórticos de concreto reforzado	2	4	6
Pórticos de concreto reforzado y mampostería	2	4	6
Pórticos de acero	2,5	4,5	6
Muros de concreto reforzado	1,5	3	4,5

Fuente: (Comisión de Normas de Estructuras para Edificaciones, 2001)

El modelo logra reproducir el comportamiento histerético, mediante la combinación de las características de resortes trabajando en arreglo, tanto en serie como en paralelo y está formulado tomando la relación momento curvatura. La respuesta histerética se considera como la combinación de: el comportamiento histerético sin degradación y el comportamiento histerético con degradación.

 a) El comportamiento histerético sin degradación, combina el efecto de dos resortes actuando en paralelo. El primero reproduce el endurecimiento

$$K_{actual} = R_{K}K_{0} = \frac{M_{actual} + \alpha M_{y}}{K_{0}\phi_{actual} + \alpha M_{y}}K_{0}$$
(3)

Donde K_{actual} es la rigidez actual, K_0 es la rigidez inicial, M_{actual} y ϕ_{actual} son el momento y la curvatura actuales, M_y es el momento cedente y α es el parámetro de degradación.

b.2. *Degradación de la resistencia:* se plantea una ley de evolución que gobierna los valores que adquiere el momento cedente en cuanto se incrementa el número de ciclos. A medida que la estructura incursiona en deformaciones plásticas y experimenta daño, pierde la capacidad de disipar energía y de desarrollar ductilidad, por tanto el fenómeno se reproduce mediante dos parámetros de control β 1 que es el parámetro de reducción de resistencia basado en ductilidad y β 2 el parámetro de reducción de resistencia basado en energía, por lo tanto, la evolución de la resistencia está dada por:

$$M_{y} = M_{y0} \left[1 - \left(\frac{\phi_{max}}{\phi_{ult}} \right)^{\frac{1}{\beta_{1}}} \right] \left[1 - \frac{\beta_{2}}{1 - \beta_{2}} \frac{H}{H_{ult}} \right]$$
(4)

Siendo M_y el Momento cedente, M_{y0} el momento cedente inicial, ϕ_{max} la curvatura máxima alcanzada en el ciclo, ϕ_{ult} la curvatura última, H la energía disipada en el ciclo y H_{ult} la energía disipada bajo carga monotónica hasta alcanzar la curvatura última.

Adicionalmente, el modelo emplea una serie de parámetros de control que ajustan la respuesta cuando se verifica la pérdida de la capacidad de la estructura de seguir disipando energía en la misma medida, como se da en los casos de pérdida de sección resistente por agrietamiento o por la cedencia en pernos de conexión de estructuras metálicas. Este efecto, conocido como estrangulamiento de los lazos de histéresis, queda incorporado en el modelo mediante un resorte trabajando en serie con el resorte histerético descrito anteriormente, activándose cuando se alcanza una deformación absoluta preestablecida.

Finalmente, el modelo presenta la posibilidad de considerar el endurecimiento que se produce por el cierre de juntas, característico de los amortiguadores metálicos o de los aisladores de los puentes, el efecto se consigue mediante un resorte adicional actuando en paralelo con todos los anteriormente señalados. Sin embargo, este tipo de elementos especiales no se considera en este trabajo, por lo tanto, sus parámetros de control no se modifican.

Número	Parámetro	Símbolo Valor	Por defecto
	Parámetros de de	gradación de rigidez	
1	Coeficiente de suavización	Ν	9
2	Razón postcedente	а	0,02
3	Coeficiente de descarga	Rk	0,5
4	Degradación de rigidez	α	2000
	Parámetros de de	terioro de resistencia	
5	Basado en ductilidad	β1	0,01
6	Basado en energía	β ₂	0,01
7	Ductilidad última	μult	12
	Parámetros de	estrangulamiento	
8	Fuerza para que ocurra deslizamiento	RS	10
9	Factor de longitud de deslizamiento	σ	1,0
10	Fuerza promedio de deslizamiento	λ	100
	Parámetros d	e cierre de juntas	
11	Exponente de rigidez	Ngap	1
12	Desplazamiento	¢gap	1000
13	Coeficiente de rigidez	Kgap	0,0
	-		

Cuadro 5. Parámetros del modelo histerético suavizado.

Fuente: (Sivaselvan & Reinhorn, 2000)

Los parámetros de control del modelo se muestran en el Cuadro 5, en el que además aparecen señalados los valores por defecto, correspondiente a comportamiento elastoplástico, sin permitir ningún tipo de degradación.

3. RESULTADOS

La respuesta histerética de los sistemas de un grado de libertad de cada tipo estructural fue obtenida para cada acelerograma, por ejemplo en la Figura 4 se muestra la respuesta histerética de una columna del pórtico de acero al ser sometido a la acción del registro del terremoto de Kobe (registro obtenido en roca), en el eje de las abscisas aparecen los valores de los desplazamientos (expresados como curvatura) y en el eje de las ordenadas, aparecen los valores de los momentos. La relación entre las ordendas de los espectros de respuesta elásticos e inelásticos, permite calcular el valor del factor de reducción de respuesta por ductilidad $R\mu$, conforme a la expresión siguiente (Miranda, 1993):

$$R_{\mu} = \frac{F_{y}\left(\mu = 1\right)}{F_{y}\left(\mu > 1\right)}$$
(5)

Donde $F_y(\mu=1)$ es la ordenada correspondiente al espectro de respuesta elástico y $F_y(\mu>1)$ es la ordenada del espectro de respuesta inelástico, para el valor prescrito de ductilidad μ . En la Figura 5 se ilustra la determinación del factor de reducción por ductilidad.

Los factores de reducción por ductilidad calculados, corresponden a períodos determinados de la

Figura 4. Respuesta histerética de pórtico de acero. Fuente: (Vielma, 2003)

Además de los resultados de fuerza y deformación, se calculó el espectro de respuesta para períodos comprendidos entre 0,1 s y 4 s. Los espectros de respuesta se determinaron para todos los acelerogramas, tipos estructurales y niveles de ductilidad (incluyendo la respuesta elástica de cada estructura) alcanzando, de esta manera, un total de dos mil ochocientos ochenta espectros de respuesta.

estructura, lo que permite elaborar espectros de factores de reducción de ductilidad R μ , los cuales se agruparon conforme a las características de los suelos. De cada grupo de espectros se obtuvo un espectro promedio menos una vez la desviación estándar, de forma que para cada tipo estructural, se obtuvo un espectro de reducción por ductilidad para los diferentes niveles de ductilidad global μ y por cada tipo de suelo. Adicionalmente, se

Figura 5. Obtención de factores de reducción por ductilidad mediante la relación de ordenadas Fuente: (Vielma, 2003)

clasificaron los espectros conforme a la distancia epicentral del registro que los originó, considerando a los registros con distancia epicentral menor de 20 km como sismo de fuente cercana, para los registros de distancias epicentrales entre 20 km y 150 km como de fuente intermedia y para aquellos con distancias epicentrales mayores a 150 km como sismos de fuente lejana.

3.1 Período característico de la respuesta estructural

Los espectros promedio de R_{μ} muestran en general dos ramas diferenciadas. La primera, que corresponde al rango de los períodos cortos, muestra una pendiente creciente desde el valor igual a la unidad, por lo que depende de los

	Pórticos de	concreto reforzado	
S1	S2	S3	S4
0,12	0,22	0,34	0,6
0,19	0,29	0,47	0,71
0,25	0,38	0,74	0,82
Pór	ticos de concrete	o reforzado y mampost	ería
S1	S2	S3	S4
0,16	0,24	0,31	0,62
0,22	0,31	0,64	0,85
0,27	0,5	0,87	1,05
	Pórti	cos de acero	
S1	S2	S 3	S4
0,19	0,2	0,27	0,6
0,26	0,32	0,48	0,71
0,32	0,51	0,65	0,83
	Muros de c	oncreto reforzado	
S1	S2	S3	S4
0,15	0,33	0,58	0,63
0,26	0,42	0,82	0,88
0,35	0,5	1,04	1,12

Cuadro 6. Períodos característicos por tipo estructural, en segundos.

Fuente: (Vielma, 2003)

valores del período T. La segunda rama, muestra valores de R_{μ} constantes o bien con ligeras variaciones, alcanzando valores de ordenadas inferiores a los correspondientes a la ductilidad global. El período a partir del cual termina una rama y comienza la siguiente se conoce como período característico T_g, el cual se determinó para cada espectro promedio de R_{μ} como el punto a partir del cual los valores de las ordenadas se podían considerar dependientes de la ductilidad global, siendo definida esta rama mediante regresión lineal (Vielma, 2003).

Finalmente, la rama dependiente del período se traza siguiendo la pendiente inicial del espectro. De esta manera se obtiene un conjunto de períodos característicos que se resumen en el Cuadro 6.

3.2. Espectros idealizados de R_i

Los espectros de R_{μ} se presentan idealizados con la finalidad de simplificar su uso en

el proceso de diseño (Vidic et al., 1994). Los espectros se han idealizado según las expresiones siguientes:

$$R_{\mu} = 1 + \mu \cdot T / (a \cdot T_g) \text{ para } T < T_g$$
(6)

$$R_i = 1 + i/a + b.(T - T_g)$$
 para $T \ge T_g$
(7)

Donde a y b son los parámetros de ajuste de las ramas dependientes del período T y de la ductilidad μ . Los valores de los parámetros de ajuste, así como los períodos característicos por cada fuente, se muestran desde el Cuadro 7 hasta el Cuadro 10. Cabe indicar que los valores del parámetro b corresponden a la pendiente de la rama dependiente del período, la cual resulta muy próxima al valor nulo, pero que en algunos casos alcanza valores de hasta el 5 % o incluso, valores negativos.

Cuadro 7. Parámetros de espectros de factores de reducción. Pórticos de concreto reforzado

Suelo	Ductilidad		Fuente cer	cana	ŀ	uente inte	rmedia		Fuente leja	ana
		Tg	а	b	Tg	а	b	Tg	а	b
S1	$\mu=2$	0,11	27,027	0,0302	0,19	24,691	0,0018	0,19	24,691	0,0018
	µ=4	0,15	17,778	-0,0114	0,24	16,504	-0,0132	0,24	16,504	-0,0132
	µ=6	0,23	16,438	-0,1279	0,28	16,179	-0,0634	0,28	16,179	-0,0634
S2	µ=2	0,20	37,915	0,0610	0,23	32,300	0,0316	0,23	32,300	0,0316
	$\mu=4$	0,25	19,630	0,0121	0,27	18,657	0,0074	0,27	18,657	0,0074
	µ=6	0,33	18,939	-0,0255	0,37	17,685	-0,0252	0,37	17,685	-0,0252
S 3	µ=2	0,24	33,552	0,0613	0,28	26,965	0,0267	0,28	26,965	0,0267
	$\mu=4$	0,28	17,675	0,0024	0,32	17,194	0,0100	0,32	17,194	0,0099
	µ=6	0,34	17,633	-0,0240	0,43	16,498	0,0191	0,43	16,498	0,0191
S4	µ=2	0,32	39,078	0,0965	0,34	26,980	0,0402	0,34	26,980	0,0402
	µ=4	0,46	17,844	0,0275	0,44	17,468	0,0429	0,44	17,468	0,0429
	µ=6	0,54	18,809	0,0009	0,64	16,617	0,1263	0,64	16,617	0,1263

Fuente: (Vielma et al., 2004)

Suelo	Ductilidad	I	Fuente cer	cana	Fu	ente intern	nedia		Fuente lejana		
		Tg	а	b	Tg	а	b	Tg	a	b	
S1	µ=2	0,14	24,691	0,0000	0,14	24,691	0,0000	0,14	24,691	0,0000	
	µ=4	0,18	16,667	-0,0464	0,18	16,667	-0,0464	0,18	16,667	-0,0464	
	µ=6	0,25	14,337	-0,1728	0,25	14,337	-0,1728	0,25	14,337	-0,1728	
	µ=2	0,18	30,769	0,0160	0,18	30,769	0,0160	0,18	30,769	0,0160	
S2	µ=4	0,28	17,699	-0,5393	0,28	17,699	-0,5393	0,28	17,699	-0,5393	
	µ=6	0,38	15,748	-0,1055	0,38	15,748	-0,1055	0,38	15,748	-0,1055	
	µ=2	0,28	26,178	0,0090	0,28	26,178	0,0090	0,28	26,178	0,0090	
S 3	µ=4	0,44	15,848	-0,0599	0,44	15,848	-0,0599	0,44	15,848	-0,0599	
	μ = 6	0,68	14,228	-0,1348	0,68	14,228	-0,1348	0,68	14,228	-0,1348	
	µ=2	0,54	27,701	0,0269	0,54	27,701	0,0269	0,54	27,701	0,0269	
S4	µ=4	0,84	15,729	-0,0551	0,84	15,729	-0,0551	0,84	15,729	-0,0551	
	µ=6	0,94	14,652	-0,0680	0,94	14,652	-0,0680	0,94	14,652	-0,0680	

Cuadro 8. Parámetros de espectros de factores de reducción. Pórticos de concreto reforzado y mampostería

Fuente: (Vielma et al., 2004)

Cuadro 9. Parámetros de espectros de factores de reducción. Pórticos de acero

Suelo	Ductilidad	I	Fuente cerc	cana	Fu	ente intern	nedia]	Fuente lejana		
		Tg	а	b	Tg	а	b	Tg	а	b	
S1	$\mu=2$	0,18	21,645	0,0196	0,19	19,608	-0,0100	0,19	18,034	0,3545	
	$\mu=4$	0,23	22,324	0,0484	0,21	15,924	-0,0250	0,23	20,747	0,0160	
	µ=6	0,24	17,477	0,1222	0,25	14,951	0,0089	0,30	26,408	0,0446	
	µ=2	0,16	25,615	0,0312	0,18	23,364	-0,0020	0,20	18,205	0,1677	
S2	µ=4	0,18	20,794	0,1156	0,21	18,315	-0,0128	0,23	25,510	0,0303	
	µ=6	0,21	20,101	0,1788	0,24	16,000	0,0503	0,27	20,671	0,1130	
	µ=2	0,23	26,813	0,0305	0,25	21,930	0,0332	0,28	20,033	0,1790	
S 3	µ=4	0,28	19,885	0,0024	0,31	18,367	0,1127	0,37	22,321	0,0352	
	µ=6	0,33	15,676	-0,1171	0,40	16,575	0,0927	0,46	19,149	0,1582	
	µ=2	0,33	25,536	0,0222	0,38	21.758	0,0674	0,38	18,750	0,2505	
S4	µ=4	0,41	19,100	-0,0182	0,52	19,092	0,2785	0,56	21,428	0,0473	
	µ=6	0,51	14,782	-0,0682	0,65	19,608	-0,0100	0,69	18,367	0,1955	

Fuente: (Vielma et al., 2004)

Cuadro 10. Parámetros de espectros de factores de reducción. Muros de concreto reforzado

Suelo	Ductilidad		Fuente cere	cana	Fuent	e intermedi	a	Fuente lejana		
		Tg	а	b	Tg	а	b	Tg	а	b
S1	µ=2	0,10	39,536	0,0268	0,12	35,980	0,0182	0,17	35,731	0,0007
	$\mu=4$	0,15	30,804	0,2059	0,19	21,589	0,1322	0,27	23,943	-0,0124
	μ=6	0,21	31,876	0,3750	0,28	20,345	0,2662	0,39	23,173	0,0020
	µ=2	0,23	111,773	0,0033	0,28	51,742	0,0089	0,35	49,538	0,7450
S2	µ=4	0,27	127,605	0,0576	0,37	28,249	0,0710	0,42	26,906	0,4199
	µ=6	0,44	111,386	0,0977	0,45	27,675	0,1248	0,53	24,956	0,7433
	µ=2	0,41	98,814	0,0007	0,46	50,693	0,1043	0,66	34,811	0,0138
S 3	$\mu=4$	0,72	91,547	0,0747	0,77	35,010	0,4192	0,77	19,481	0,1416
	μ=6	0,91	86,059	0,1454	0,94	33,587	0,6891	0,94	18,396	0,2964
	µ=2	0,53	61,275	0,0744	0,60	36,621	0,0549	0,63	35,336	0,0060
S4	$\mu=4$	0,76	68,384	0,3923	0,84	23,385	0,2849	0,90	19,816	0,0095
	µ=6	0,92	77,734	0,6215	1,09	22,310	0,5029	1,19	17,763	-0,0116

Fuente: (Vielma et al., 2004)

A continuación se presentan los espectros de R_{μ} por tipo estructural, desde la Figura 6 hasta la Figura 9

Figura 6. Espectros de factores de reducción por ductilidad. Pórticos de concreto reforzado. Fuente: (Vielma et al., 2004)

Figura 7. Espectros de factores de reducción por ductilidad. Pórticos de concreto reforzado y mampostería Fuente: (Vielma et al., 2004)

Figura 8. Espectros de factores de reducción por ductilidad. Pórticos de acero. Fuente: (Vielma et al., 2004)

Figura 9. Espectros de factores de reducción por ductilidad. Muros de concreto reforzado. Fuente: (Vielma et al., 2004)

3.3. Comparación de los resultados con los valores de la normativa

Los factores de reducción descritos en la Norma Covenin 1756-98 (Comisión de normas de estructuras para edificaciones, 2001), se igualan a los valores de la ductilidad μ , criterio válido para el rango de valores de períodos para los que se cumple la "regla de iguales desplazamientos" (Applied technology council, 1995). Sin embargo, de acuerdo con los resultados obtenidos, los factores de reducción muestran valores inferiores a la ductilidad utilizada en el cálculo.

De los espectros mostrados en el punto anterior, se verifica que en ninguno de los casos R_{μ} alcanza el valor de la ductilidad, esto se debe a que la regla de iguales desplazamientos comienza a cumplirse a partir de períodos muy altos, para esto se ha graficado la relación de los desplazamientos inelásticos y elásticos para cada período, observándose que los desplazamientos se igualan en el período de 13 s, aproximadamente (ver Figura 10). Chopra (2000), indica que el rango dependiente de los desplazamientos se inicia para el caso mostrado a partir del período de 3 s, sin embargo, presumir el cumplimiento de la regla de iguales desplazamientos a partir de este período, y por tanto, hacer que el factor de reducción se iguale a la ductilidad, es incorrecto.

Por otro lado, se presume que para el rango de períodos intermedios es válida la "regla de igual energía"; mediante esta regla se iguala la energía disipada por la estructura con respuesta elastoplástica con la disipada por la estructura elástica, lo que permite establecer la relación entre el factor de reducción de respuesta y el factor de ductilidad (Newmark & Hall, 1969):

$$R = \sqrt{2 \cdot \mu - 1} \tag{8}$$

En los espectros de R_{μ} que se muestran de la Figura 6 a la Figura 9, se observa que la regla de igual energía es cumplida únicamente por los espectros de ductilidad baja, por ejemplo, para el caso de pórticos de concreto los valores de R_{μ} se aproximan a 1,8, valor similar al que se obtiene al sustituir $\mu = 2$ en la ecuación (8).

Relación de desplazamientos

Figura 10. Espectro de relación de desplazamientos elásticos entre inelásticos. Fuente: (Vielma et al., 2004)

En la Figura 11 se pueden observar los espectros de energía correspondientes al caso de pórticos de concreto reforzado, para un amortiguamiento del 5 %, con valores distintos de ductilidad, desde el caso elástico ($\mu = 1$), hasta el caso de ductilidad más elevada ($\mu = 6$). Los espectros muestran en el área bajo la curva (no sombreada) la contribución de la disipación histerética a la disipación de energía total, mientras que en la parte sombreada superior entre las curvas, se presente la disipación debida al amortiguamiento viscoso. Es claro que los valores de energía total disipada varían de

acuerdo con la ductilidad, para valores fijos del período estructural.

Obviamente, para el caso elástico en el cual no se alcanza la rama plástica, la disipación es puramente viscosa, razón por la que las velocidades en los espectros de respuesta elásticos son mayores que en los casos en los cuales hay disipación inelástica (ver Figura 12). Además, se verifica que los valores del total de la energía disipada son más altos para el caso elástico que para los casos inelásticos, por lo que no es adecuado aplicar la "regla de igual energía".

Figura 11. Espectros de energía para diferentes valores de ductilidad. Fuente: (Vielma et al., 2004)

Espectro de velocidades

Figura 12. Espectros de velocidades para casos elástico e inelásticos Fuente: (Vielma et al., 2004)

3.4. Efecto de la distancia epicentral

Los códigos de diseño sismorresistente no incluyen en la determinación de los factores de reducción el efecto de la distancia epicentral, solamente se hace referencia a la distancia epicentral al momento de amplificar la aceleración de diseño de acuerdo al *Uniform building code* descrito en (International conference of buildings officials, 1997).

Los espectros de R_{μ} muestran que para el caso de pórticos de concreto armado (también para el caso de pórticos de concreto armado con mampostería) los valores de ordenadas son mayores hacia la zona de transición en la que se cambia de la rama dependiente del período, hasta la rama dependiente de la ductilidad, cuando el registro procede de suelos rocosos o muy duros (suelos S1 y S2) y de fuente cercana. El comportamiento cambia para distancias epicentrales largas sobre suelos medio duros y suelos blandos (suelos S3 y S4), en este caso, los valores máximos se obtienen a medida que el período estructural crece.

El efecto de la incorporación de la mampostería a los pórticos de concreto reforzado, permite que el conjunto se haga más rígido, lo cual se evidencia con la reducción de los períodos característicos respecto a los períodos característicos de los pórticos de concreto sin mampostería; sin embargo, éstos siguen mostrando su dependencia respecto a la distancia epicentral, presentando valores de períodos característicos que, para fuente lejana, se incrementan alrededor de un 20 % respecto a los valores de los períodos obtenidos para fuente cercana (para niveles altos de ductilidad).

Al analizar los valores promedio de los espectros de pórticos de acero, se encuentra que estos muestran uniformidad para casi todas las combinaciones posibles, pero se detecta que los valores para registros de fuente cercana suelen ser mayores en el rango de la transición de las ramas para suelos medio duros o blandos (suelos S3 y S4); a medida que los suelos se hacen más rígidos, la influencia de la distancia epicentral se hace menos evidente.

Los muros de concreto reforzado muestran una mayor influencia de los registros de fuente cercana, ya que para suelos tipo S2, S3 y S4 los espectros no presentan la transición de las dos ramas, sino más bien una sola rama de pendiente uniforme, que depende tanto de la ductilidad como del período estructural. A medida que la distancia epicentral se incrementa, los espectros muestran formas asimilables a la bilineal, similares a las obtenidas para los otros tipos estructurales. En general, para distancias epicentrales intermedias y largas, los factores de reducción presentan valores inferiores a la ductilidad global esperada, mientras que para distancias cortas, sus valores crecen hasta aproximarse a los valores de la ductilidad, hacia la zona de los períodos altos.

En general, la distancia epicentral afecta los valores de R_{μ} , las disminuciones rondan el 15 % al comparar los valores obtenidos para distancias epicentrales grandes respecto a los valores correspondientes a distancias epicentrales cortas.

CONCLUSIONES

- 1. Se justifica la obtención de factores de reducción basados en ductilidad R_{μ} a partir de la respuesta no lineal de las estructuras, en vista de que el análisis de la respuesta no lineal de sistemas de grados múltiples de libertad, sigue siendo impracticable con las herramientas de cálculo disponibles en la actualidad.
- 2. La respuesta estructural debe obtenerse mediante modelos que reproduzcan apropiadamente cada tipo estructural. La utilización de modelos más sencillos (bilineal) han permitido plantear factores de reducción que difieren de los obtenidos por el análisis no lineal, produciendo un diseño con aceleraciones calculadas de acuerdo con la reducción con factores de ductilidad global, al aplicar la "regla de iguales desplazamientos" que sólo se alcanza para valores de períodos muy altos, que no corresponden con los valores que exhiben los edificios usuales.
- Los valores de los períodos característicos T_g dependen del tipo estructural, se incrementan con la ductilidad y también a medida que el suelo es más blando.
- La distancia epicentral también afecta los valores del período característico T_g

en diferente proporción para cada tipo estructural. En general, a medida que se incrementa la distancia epicentral el período característico se incrementa para similares condiciones de suelo, tipo estructural y ductilidad.

- 5. La distancia epicentral tiene una apreciable influencia sobre los valores de R_{μ} de estructuras aporticadas de concreto reforzado, teniendo mayores valores de reducción R_{μ} para distancias epicentrales cortas y suelos rígidos (S1) y suelos duros (S2) respecto a las distancias epicentrales largas y suelos menos rígidos (suelos S3 y S4).
- Los pórticos de acero muestran valores de R_μ ligeramente superiores para distancias epicentrales cortas y para suelos medio densos (S3) y suelos muy blandos (S4). Sin embargo, la distancia epicentral no amplifica los valores de R_μ cuando los suelos son más rígidos (suelos S1 y S2).
- Las estructuras de muros de concreto reforzado son las más influenciadas por la distancia epicentral, de forma que para distancias epicentrales cortas, los espectros de factores de reducción muestran una forma dependiente del período y de la ductilidad global μ.
- 8. Se verifica que es incorrecto seguir aplicando la "regla de igual energía" ya que los mecanismos de disipación puramente elásticos poseen valores diferentes, para todos los rangos de valores de períodos respecto al de los casos en los que el comportamiento es elastoplástico, en el cual la disipación varía con los ciclos de carga y es de naturaleza histerética y viscosa.
- 9. Es necesario continuar investigando en este campo, incorporando el efecto de la sobrerresistencia y de la redundancia estructural, a fin de obtener factores de reducción de respuesta R de estructuras de múltiples grados de libertad, diseñadas para disipar energía.

REFERENCIAS BIBLIOGRÁFICAS

- Applied Technology Council (ATC). (1995). Structural response modification factors Report ATC-19. Redwood City, California: United States. Gouvernament Printing Office.
- Chopra, A. (2000). *Dynamics of structures* (2^a ed.). New Jersey: Editorial Prentice–Hall.
- Comisión de normas de estructuras para edificaciones. (2001). Norma venezolana de edificaciones sismorresistentes Covenin 1756-1998. Caracas: Fondo Norma.
- Elnashai, A. S. & Mwafi, A. M. (2002). Overstrength and force reduction factors of multistorey reinforced-concrete buildings. *Structural Design of Tall Building*, 11, 329-351.
- Hart, J. D. & Wilson, E. L. (1989). Simplified earthquake analysis of buildings including site effects. *Report N^o UCB/SEMM-89/23*. Berkeley: University of California.
- International conference of buildings officials. (1997). Uniform building code (UBC). Whittier, California: Whittier
- Ishibashi, I. & Zhang, X. (1992). Unified dynamic shear moduli and damping ratios of sand and clay. *Soil and foundations*, JSSMFE, *I* (33). 182-191.
- Miranda, E. (1993). Site-dependent strengthreduction factors. *Journal of Structural Engineering*, 12 (119) 3503 – 3519.
- Newmark, N. M. & Hall, W. J. (1969). Seismic design criteria for nuclear reactor facilities. *Proceeding of the 4th world conference* on earthquake engineering (pp. 37-50). Santiago, Chile.
- Park, Y. J., Ang, A. & Wen, Y. K. (1984). Seismic damage analysis and damage-limiting

design of R.C buildings.Tech. Report SRS N^o 516. Illinois: Dept. of Civil Engineering, University of Illinois, Urbana III.

- Ramberg W. & Osgood, W. R. (1943). Description of stress-strain curves by three parameters. NACA Technical Note 902. National Bureau of Standards. Washington: United States Governament Printing Office.
- Reinhorn, A. et al. (1998). Nspectra, non-linear analysis program for inelastic spectra with degradation and deterioration of structural systems: User manual. New York: University at Buffalo.
- Rivero, P. (1996). Respuesta espectral de sitio considerando comportamiento inelástico del suelo. Tesis para optar al grado de Magister Scientiae en Ingeniería Estructural, Universidad de los Andes, Mérida, Venezuela.
- Rivero, P. & Lobo-Quintero, W. (1996). Formas espectrales para suelos considerando comportamiento no lineal. Boletín Técnico IMME (pp. 39-54). Caracas, Venezuela: Facultad de Ingeniería Universidad Central de Venezuela.
- Sivaselvan, M. & Reinhorn, A. (2000). Hysteretic models for deteriorating inelastic structures. *Journal of Engineering Mechanics*, 6 (126) 633-640.
- Vidic, T. Fajfar, P.& Fischinger, *M.* (1994). Consistent inelastic design spectra: strength and displacement. *Earthquake engineering and structural dynamics*, 23, 507–521.
- Vielma J. C. (2003). Espectros inelásticos considerando comportamiento inelástico de suelo y estructura. Tesis de Maestría en Ingeniería Estructural, Universidad de Los Andes, Mérida, Venezuela.
- Vielma, J. C., Lobo, W. & Rivero, P. (2004). Hysteretic determination of the response

factors $R\mu$ according to structural types. Proceeding of the 14th world conference on earthquake engineering, Vancouver.

SOBRE LOS AUTORES

Juan Carlos Vielma Pérez

Profesor de Universidad Politécnica de Cataluña, Campus Nord, Edificio C1, Despacho 105 Teléfono: 34 - 651380347. Correo electrónico: jcvielma@ucla.edu.ve o jcvielma@cimne.upc.edu

William Lobo Quintero

Profesor Titular de la Universidad de Los Andes, Venezuela.

Departamento de Estructuras, Facultad de Ingeniería, Av. Tulio Febres Cordero, Mérida 5101, Universidad de los Andes (ULA), Mérida- Venezuela.

Telefonos: (58) 274 - 2402862 y 2402873 Correo electrónico: wlobo@intecable.net.ve

Pedro Rivero Rivero

Profesor Agregado de la Universidad de Los Andes, Venezuela. Departamento de estructuras, Facultad de Ingeniería, Av. Tulio Febres Cordero, Mérida

5101, Universidad de los Andes (ULA), Mérida- Venezuela.

Telefonos: (58) 274 -2402862 y 2402873 Correo electrónico: riverop@ing.ula.ve