EVALUACION DEL COEFICIENTE DE DIALISIS DE SOLUCIONES DE GLOBULINA DE SANGRE DE EQUINO CON SULFATO DE AMONIO

Gerardo Chacón V.*
Michael Chacón Sch.*

Key Words:
Anthophid, blood, Serum, Dialysis, Coefficient, Mass Transfer.

Resumen
Se estudió el coeficiente de dialisis de la desalinización de soluciones de globulina, de sangre de equino, del sulfato de amonio. Su comportamiento se expresa por

$$U = 2.0 \times 10^{-12} \left[Q \frac{S}{(W n)} \right]^{1.16} \left[\frac{T}{D} \right]^{1/2} \left[\frac{n}{(D n)} \right]^{1/3} \times 7.6 \times 10^{-8}$$

en unidades S.I. Se cumple para la dialisis en bolsas de celulosa regenerada de baja densidad, con diámetros entre 2.54 y 5.08 cm.

Summary
Dialysis coefficient for serum, ammonium sulfate, desalination was studied. It can be evaluated by

$$U = 2.0 \times 10^{-12} \left[Q \frac{S}{(W n)} \right]^{1.16} \left[\frac{T}{D} \right]^{1/2} \left[\frac{n}{(D n)} \right]^{1/3} \times 7.6 \times 10^{-8}$$

In S.I. units. It is good for dialysis in bags of low density regenerated cellulose. It was used diameters between 2.54 and 5.08 cm.

INTRODUCCION
La globulina es la proteína globular (alfa y beta), asociada a los anticuerpos, que se encuentran en la sangre. La obtenida de equinos inmunizados con veneno de serpientes, se utiliza como preparado para neutralizar el efecto del veneno en cuestión.

Una de las etapas, en el proceso de fraccionamiento de la sangre para obtener la globulina, como el llevado a cabo en el Instituto "Clodomiro Picado" de la Universidad de Costa Rica, consiste en separarla del sulfato de amonio, ambos en solución acuosa; por medio de la operación de dialisis.

El propósito de esta investigación, es aportar los datos técnicos necesarios para el cálculo del coeficiente de transferencia de masa por dialisis; de tal forma que, se puedan emplear en el diseño y la operación de dicho proceso.

EQUIPO EXPERIMENTAL
El proceso fue llevado a cabo, introduciendo la solución en bolsitas cilíndricas de material celuloósico, colocadas en un tanque rectangular, por el cual se hace pasar agua como solvente; según se muestra en la figura No. 1.

El modelo cinético del proceso se representa por

$$\frac{d(VC)}{dt} = -UA(C-C_w)$$

(1)

Y el balance de masa, mediante

$$VC + WC_w = VC_0$$

(2)

Donde:
$$C = \text{Concentración de la sal dentro de la bolsa de dialisis.}$$
$$C_0 = \text{Concentración inicial de la sal dentro de la bolsa de dialisis.}$$
$$C_w = \text{Concentración de la sal en el tanque}$$

Bibliografía
* Escuela de Ingeniería Química Universidad de Costa Rica
San José, Costa Rica
V = Volumen de la bolsa, con la solución
A = Área de transferencia de masa, tomada como el área la bolsa
W = Volumen de solvente en el tanque.
t = Tiempo
U = Coeficiente global de transferencia de masa, por diálisis.

La operación se puede llevar a cabo en forma semicontinua (estado uniforme en la bolsa, flujo continuo en el tanque), en la cual se cumple el siguiente modelo integrado \(U = V \ln(C/C_w) \)
\[(C-C_w = C) \]

O bien, en forma discontinua o “batch” (estado uniforme en la bolsa y el tanque); la cual, se describe por la relación \(U = V \ln(VC/WCw + (1 + V/W)) \)
\[\frac{A}{(C/C_w - Co/Cw)} (t-r) \]

La agitación se efectuó mediante bombas de amalgamas, reciclando el solvente. El flujo no se mantuvo por medio de un depósito de cal. Los demás detalles de construcción se muestran en la Figura No. 1.

Materiales

Se empleó suero de equino, no especificado sin inocular con veneno. Se separó la globulina por el proceso estándar, realizado en el Instituto “Clodomiro Picado” de la Universidad de Costa Rica. La globulina fue enviada aquí, una pasta blanca que contiene 240 kg/m³ de sulfato de amonio.

Las membranas utilizadas fueron de celofán, se colocaron secas. Se emplearon materiales de las casas: Dupont 300 P. D. (DuPont de Nemours, Wilmington, U.S.A.), Teepak (Teepak West Park, U.S.A.) y Cialysterch Lauch 30 (Kalle Niederhoecchst, Weisbaden, Alemania).

VARIABLES ESTUDIADAS

Las variables estudiadas, las cuales se muestran en el Cuadro No. 1, junto a los niveles evaluados, se distribuyeron en diseños factoriales de segundo orden, según la metodología de Box, Hunter y Hunter, hasta completar 24 experimentos de los cuales se repitieron seis para estimar la varianza.
CUADRO No 1.
VARIABLES ESTUDIADAS EN LA EVALUACIÓN DEL COEFICIENTE DE DIALISIS DE SOLUCIONES DE GLOBULINA DE SANGRE DE EQUINO CON SULFATO DE AMONIO

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>NIVELES</th>
<th>UNIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>volumen del tanque w</td>
<td>0,1 - 1,0</td>
<td>m³</td>
</tr>
<tr>
<td>volumen/flujo total Q/w</td>
<td>0,1 - 0,2 - 1,0 - 2,0</td>
<td>h</td>
</tr>
<tr>
<td>volumen/flujo neto</td>
<td>0 - 10 - 20</td>
<td>h</td>
</tr>
<tr>
<td>Temperatura T</td>
<td>10 - 20 - 30 - 40</td>
<td>°C</td>
</tr>
<tr>
<td>Separación de bolsas E</td>
<td>100 - 125 - 150 - 175</td>
<td>mm</td>
</tr>
<tr>
<td>diámetro de bolsa D</td>
<td>2,5 - 3,8 - 5,1</td>
<td>cm</td>
</tr>
</tbody>
</table>

El cálculo de U se efectuó con las ecuaciones 3 o 4, según corresponda; mediante la evaluación de la concentración del sulfato de amonio en forma indirecta con un refractómetro tipo Abbé, calibrado con el químico de calidad reactiva. Los datos se tomaron cada 15 minutos, durante las primeras cuatro horas de cada ensayo del proceso.

RESULTADOS
El flujo neto y el diámetro de la bolsa, no mostraron efectos significativos sobre el coeficiente de dialisis, en el ámbito de las variables estudiadas. Lo que confirma los trabajos previos de la Escuela de Ingeniería Química 7,12,17.

El tipo de membrana tampoco mostró efectos apreciables. Este mismo comportamiento lo observaron Delgado y Morales 13, también se puede deducir de los datos de Lanc y Riggle 10.

La separación entre bolsas, el flujo total (neto más reciclado), el volumen del fluido en el tanque y la temperatura generaron variaciones significativas...
vas sobre el coeficiente de diálisis. Su efecto se puede relacionar con los resultados experimentales de \(U \), satisfactoriamente como se muestra en la figura No. 2, por

\[
U = 2.0 \times 10^{-12} (Q S / (W n))^{0.16} (T^{2/3} / (D n^{1/3})) + 7.6 \times 10^{-8}
\]

(5)

Donde:

\[
\begin{align*}
U & = \text{Coeficiente global de transferencia de masa por diálisis, m/s} \\
Q & = \text{Flujo total dentro del tanque, m}^3/\text{s} \\
S & = \text{Área neta de flujo, es el área total del tanque menos la suma de las áreas externas de todas las bolsas de diálisis, m}^2 \\
W & = \text{Volumen de solvente en el tanque, es el volumen del tanque menos el ocupado por todas las bolsas, m}^3 \\
n & = \text{Viscosidad cinemática del agua pura, m}^2/\text{s} \\
T & = \text{Temperatura de la solución, K} \\
D & = \text{Diámetro de la bolsa de diálisis, m}
\end{align*}
\]

El primer paréntesis cuadrado, \([Q S / (W n)]\), representa el Número de Reynolds, su definición se infiere del estudio de escalamiento; en el cual Morales encontró, que el factor de escala del volumen y el del flujo, están elevados a la misma potencia. Asimismo, el hecho de que otros tipos de definición no dan resultados congruentes. Por otro lado, al aplicar esta ecuación a los trabajos previos, se encontró que reproduce la información para valores del Número de Reynolds mayores que 100.

El segundo factor, manifiesta el efecto de la temperatura y la naturaleza de las sustancias, mediante la relación teórica con el Número de Schmidt a la un tercio \((T^{2/3})\); para el que, se estima la difusividad del sulfato de amonio diluido con la relación de Nernst-Haskell-Stokes-Einstein.

El factor de retardo \(r \), mostró un comportamiento inestable, con una tendencia hacia 0 al aumentar la temperatura. Su valor se puede estimar con

\[
r = 73 \exp (-0.072 T) + 1.3 \text{ ks}
\]

(6)

BIBLIOGRAFÍA

