Revista de [a Universidad de Costa Rica
JULIO/DICIEMBRF 1992 VOLUMEN?2 N© 72

ﬂ86ﬁ16f16

@KApvomrOBpoTL
U,SBXS(bYT]I(pK}\.[L

INGENIERIA

Revista Semestral de la Universidad de Costa Rica
Volumen 2 Julio-Diciembre 1992 Niumero 2

DIRECTOR
Rodolfo Herrera J.

EDITOR

Victor Herrera C.

CONSEJO EDITORIAL
Victor Hugo Chacén P.
Ismael Mazén G.
Domingo Riggioni C.

CORRESPONDENCIA Y SUSCRIPCIONES

Editorial de la Universidad de Costa Rica
Apartado Postal 75
2060 Ciudad Universitaria Rodrigo Facio

San José, Costa Rica

CANIJES
Universidad de Costa Rica
Sistemas de Bibliotecas, Documentacion e informacion
Unidad de Seleccion y Adquisiciones-CANJE
Ciudad Universitaria Rodrigo Facio

San José, Costa Rica

Suscripcion anual:
Costa Rica:¢750,00
Otros paises: US $20.00
Numero suelto:

Costa Rica:¢500,00
Otros paises: US $10.00

'MULTIATTRIBUTE DECISION PROBLEMS

N ALGORITHM FOR LONG MATRICES

Ingenieria 2 (2): 11-25 1992 San José Custa Rica

Raiil Alvarado *

RESUMEN

Tratamos aqui con el problema cuando el conjunto de alternativas es muy grande; por lo tanto no es realista usar modelos
que buscanen la matriz de decision més de una vez. Presentamos un nuevo modelo basado enideas deteoria de utilidad. Finalmente
tratamos con el problema donde los datos para la matriz de decisién estdn esparcidos en varios archivos y lugares. Damos algunas

ideas de como lidiar con esta situacién.

SUMMARY

We deal with the problem when the set of alternatives is very large; hence it is not realistic o use models that browse through
the decision matrix more than once; here we present a new model based on the ideas of expected utility. Finally, we look at the
problem where the data for the decision matrix is spread across several files and locations. Also here we give some ideas of how

to deal with this situation.

1. INTRODUCTION

As human beings we face decision making
situations constantly. These decisions may vary
in nature and importance, from simple ones,
such as deciding whether to watch a movie or to
read a book, to more complex and important
decisions that may affect us for the rest of our
lives, or may change the lives of many persons.

A very important characteristic of the wa y we
make decisions is that we always try to choose
the best or optimum alternative. Why choose
reading the book instead of watching the movie?
Because we think we will have more fun with the
book. Why choose this ice cream instead of that
one? Because it tastes better. Why buy these
shares instead of those? Because we think the
former will yield a higher profit.

Besides this optimization tendency, it is also
important to notice that “the best” is a subjective
value, In the same situation different people

* Profesor asociado y exdirector de la escuela de Ciencias de la
Computacion e Informitica.

make different decisions. One person chooses
the vanilla ice cream and another chooses the
strawberry ice cream, even though price and
quantity are the same.

Any tool for decision making has to consider
at least the two characteristics mentioned above:
optimization and subjective or personal value.
Most of the decision making situations also share
a third characteristic: the fact that many prob-
lems cannot be solved considering only one
aspect of the situation; that is, multiple criteria
must be considered.

2. MULTIATTRIBUTE UTILITY THEORY
AND THE OPTIMIZATION PROBLEM

Decisions are usually made based on the data
contained in a database. Often, the relevant data
can be presented to the decision maker as a set of
tuples; each tuple represents an alternative. So,
the problem for the decision maker is to choose
a tuple (or set of tuples) such that it is the best
solution to the problem being solved.

12 INGENIERIA

It is not difficult to show that this process fits
very well in the format of Multiattribute Decision
Methods (MADM). We said that each tuple repre-
sents an alternative, so we can think of the table or
relation composed of those tuples as the set of
alternatives; we will call this set the feasible set.

Let g be an alternative or tuple and let F be the
feasible set or table, then the problem of choosing
the best solution can be stated as:

Choose “the best” a where acF.

We haven’t said anything yet about what we
mean by the best. We might be tempted to say that
a solution is the best if it is preferred over all the
other alternatives, but in real life situations this is
not a good, workable definition; it has some
weaknesses. First, there may be several best alter-
natives; that is, the solution is not necessarily
unique; second, it is not always possible to com-
pare two alternatives in order to decide which one
is better; third, we haven’t established clearly what
we mean by preferred. In order to start solving
these problems, it is convenient to rephrase our
goal:

Optimize the choice of a where a € F; this
looks like the classical mathematical optimization
problem, i.e.: Optimize f(a) where a€ F .

Since a represents a tuple, this means that ais
an ordered set of attributes, in the sense of database
theory. What is important for us is that a is
identified with a set of values, i.e.

a<-> (al,..,aj ..,an),hence we can think of
o as a point in R" (here R is the set of real

numbers). Hence, the feasible set F is a subset of
R™. Sometimes it is possible to express the feasible
set as the set of points in R that satisfy a set of
constraints, such as:

Optimize f(x;,..,x,) subjectto g, (x, »Xp) <,
>=,<=,=,<> 0. fori=1,.., m;wherefand

g; are functions from R™ toR.

The function f is called the objective function,
and the functions gj are the constraints. Hence the
optimization problem can be stated as:

Optimize f (Xisees X) where (xl...,xn) € F,the
feasible set.

If the optimization problem is to maximize the
function f, then it can be reformulated as :

Find Max{f(x)}, x = (x{,..,x) & F.

Often the function frepresents a utility function
(a multiattribute utility function since
x=(x1,--,Xp)); i.e. we want to find :

Max {u(x)}, x & F.

From a computer science point of view, we
think of the tuples or records in the database as the
tuples x and the database as the feasible set F.
Hence we want that tuple or record that maximizes
the utility function for the decision maker.

3. PREFERENCE RELATIONS AND
UTILITY FUNCTIONS

The set of real numbers R has a very useful
characteristic that is not found naturally in higher
powers of R (Rz' R3, etc). That is the very simple
property that, given any two numbers, aand b, you
can always compare them; i.e. eithera<bora =b
ora>bholds. In other words, R isa totally ordered
set (under the canonical order). It is also well
known that other sets such as R2, R3 or the set of
all subsets of a given set don’t have this property

(under canonical order relations, of course).

When we are modeling a real world situation,
and we have to make decisions based on a single
parameter such as weight or height then often
everything is nice and easy: Just order the objects
according to their values for that parameter. Then
given any two objects, usually you will be able to
tell which one you prefer.

ALVARADO: Multiattribute decision problems: 13
an algorithm for long matrices

But, when you need two or more parameters or
attributes in order to have a good characterization of
the objects (e.g., height and weight and color),
then, given any two objects, it is not always clear
which one you prefer. Bad qualifications in one
attribute may be compensated by another (e.g. “the
colorisugly but itis the right size”); sometimes this
leads to the creation of indifference classes between
the objects.

Since we are going to be using the terms prefer-
ence, order, partial order, etc., it is better to give a
precise definitions of all these terms.

Definition: Given a set A, a preference relation
onAisa binary relation P on the elements of A. That
is, P isasubset of A X A (Cartesian product). If
(a,b) is in A then we write aPb (aPbis read as “a
is preferred to b™).

In general, P is only required to be a binary
relation, whose main role (semantically) is to indi-
cate when an element of the alternative set is
preferred over another. But, since we are working
in RM, we want our preference relation to be in
concordance with the componentwise order relation
inRD, Thatis, for x and y elements of R, x =
(X1,--->Xp) andy = (¥1,...,¥n), wesay thatx <y
iff xj<yjforeveryi=1,...,n. (If xj yj for at least
some i then we say x <y). Hence, we can assume
that P is transitive

Definition Letx and y be alternatives. If x <y then
we say that y dominates x.

Definition: Let R beabinary relationon A. Letx,
¥y, Zbe elements of A. The following are properties
ofR:

Reflexivity @ Foreveryxin R xRx.
Transitivity If xRy and yRz then xRz

Antisymmetry If xRy and yRx then x=y.

Symmetry If xRy then yR x.
Asymmetry If xRy then not(yRx).

Connexity ForeveryxandyinR xRy or yRx

If R is reflexive and transitive, then R is called a

partial preorder.

IfR is reflexive, antisymmetric and transitive,
then R is a partial order.

If a partial order (resp. preorder) has the
connexity property, it becomes a total or com-
plete (or linear) order (resp. preorder).

Definition: Given a set A (let’s call it the set of
alternatives) and a preference relation on A, the
utility function u on A is defined as a function
u: A— Rsuchthat aPb => u(a) > u(b).

As can be expected, if objects a and b are
indifferent then u(a)=u(b).

If a and b are indifferent, then we write alb. (By
indifference we mean somesense of equality; this
is also a binary relation and might be used
together with the preference relation).

When the elements of the set A are modeled as
tuples of two or more attributes, that is
a¢>(a,,..,a), n>1, uiscalled amultiattribute
utility function.

When we know the preference structure on A, we
can always define a utility function; obviously
itisnot unique. Utility functions are just numeri-
cal evaluations of preferences; hence they are
consistent with the user’s preferences (P is a
transitive relation). The real problem is that,
since A is not necessarily a totally ordered set,
then for some alternatives a and b you don’t

know whether aPb or bPa or alb.

If we can define this function u, then in some
sense we have recreated the nice unidimensional
(linear) property of the real numbers. Note that
if we have u, then we can extend the preference

relation to any pair of alternatives.

The problem in real life situations is that
things are not so nice: Either youdon’t know the
preference structure on the set A, or you don’t
know the utility function u. Some techniques
have been developed to deal with these situations
[Keeney and Raiffa, 1976]. In order to explain
this problem, it is convenient to modify our
definition of utility functions:

14 INGENIERIA

Definition: Given a set A (let’s call it the set of
alternatives) and a preference relation on A, the
utility function u on A is defined as a function
u:A-> R such that aPb <=> u(a) > u(b).

The equivalence symbol indicates that this is a
two-way situation. As we said before, if we have a
very nice preference relation then the problem_is
solved. This is also true when you know the utility
function. But for some cases you don’t know both
sides of the equivalence.

Some people have tried to solve the optimizing
problem by looking mainly at the utility function.
Some of them try to solve some special cases of the
utility function, claiming that these cases occur
often in practice. It is not rare then to see that they
ask for particular properties. “Let’s assume that u
is concave” or “Let’s assume that u is single
peaked” or “Let’s assume that u is a single variable
function” etc., are common prerequisites f L thi 9
type of method. Once you have the optimum value
for u, then it can be traced back to the set A and the
preference relation P on A.

Some other methods try to explore more deeply
the preference relation itself. That is, they attempt
to solve as much as possible of the optimization
problem without assuming particular properties of
the utility function.

The type of algorithm that we will want to
address here is mostly of this second type; even
though in some cases we will go to the other side
of the equivalence looking for help. We will do this
without assuming particular properties for the
utility function u. On the other hand, since we have
in mind some specific type of problems (optimiza-
tion for the multiattribute case), this will allow us
to be more specific about the utility function.

In order to be more precise about the type of
problems and algorithms that we are dealing with,
it is convenient to set some notation.

We are going to assume that A is the set of
alternatives. A has m ¢lements, and each of these
alternatives must be evaluated with respect to n

attributes or criteria. Hence the alternative a will
be associated with the tuple (a »89,...,4,), and we
can represent the set A by the matrix D= (dij)
mxn. D is called the decision matrix and usually
we will denote its components as 8jj , since this
notation is closer to the notation of the alterna-

tives. In other words, each row of D represents an
alternative and each column represents an attribute

or criteria. Hence the optimization problem is to
choose that row that maximizes the utility for the
decision maker.

It is clear that all the attributes do not have the
same level of importance. Some or them are more
important than others. A very common procedure
for dealing with this problem is to assign weights
(Wj) to the attributes in order to assess their
relative importance. For normalization purposes,
these weights are required to be positive and their
sum equal to 1.

There are several techniques for assessing the
weights and this is a problem worth study by
itself. We are not interested in it here; so, we will
assume that they are already given.

Before we start dealing with the algorithms, it
is necessary to study more closely this matrix D;
because depending on the values of m and n,
different approaches can be taken. In the next
chapter we will show an example of MCDM
problems. The last part of the chapter will be

dedicated to the analysis of the matrix D when m
and n vary.

4. DIMENSIONS OF THE DECISION
MATRIX

As we said before, our problem is to choose an
alternative among several solutions for a given
situation. For example, let us assume that we are
in the market looking for software useful for
generating Decision Support Systems. After ask-
ing several vendors about their products and
having listened about the wonders of all of the
packages, we end up with a bunch of data. We then
arrive at the conclusion that it is necessary to put

ALVARADO: Multiattribute decision problems:
an algorithm for long matrices 15

some order in all this data before making any deci-
sions. After that, we make the typical tables with all
the relevant data.

4.1 Example. DSS Software Products and Vendor

PRODUCT AUTHOR/VENDOR

ABC FPRS ABC Management Systems, Inc.
Analect Dialog Inc.

Accent R National Information Systems
Autotab 300,3000 Capex Corporation

BBL II Core & Code

Business Modeler Business Model Systems
Callplan Calldata Systems

AND 54 PRODUCTS MORE (TOTAL 61)
TABLE 4.1 DSS Software Products and Vendors.[Reimann and

Waren, 1985].

Table 4.1 is just our set of alternatives A. What we
would like to have is some sort of order among those
61 alternatives. We really don’t need to know, for,
example, that alternative 20 is 4 times better than
alternative 12; we only need to have some ranking.
The way this ranking is built depends to some degree
on our own personal preferences. Given the same set
of data, two decision makers very likely will build
different rankings. If you feel confident enough to
establish the ranking, then you don’t need any of the
algorithms to be presented later. If you are not sure
about how to build the ranking, then you can choose
a suitable procedure among the ones available,

The next step is obviously to look at the charac-
teristics of all these products. Some of the character-
istics will be present in all the alternatives with
different degrees or levels. After some thought we
come up with a set of criteria for evaluating all the
alternatives. Sometimes we can group the criteriainto
several categories according to their similitude. This
is shown in the following table:

MODELING
Multidimensionality
Nonprocedurality
Procedural Logic
Simultaneous Equations (detection and solution)
Consolidation and allocations (multidimensional)
Mathematical and financial functions
User-defined functions
Time as a special dimension
Currency conversion and size restrictions

USER FRIENDLINESS
Consistent, natural language commands
Command abbreviations
Help command and clear-error messages and
7 more subcriteria

ANALYSIS
What if
Sensitivity
and 4 more subcriteria

FORECASTING AND STATISTICS
Time as a special dimension
Multiple regression and 5 more subcriteria

DATA MANAGEMENT 6 more subcriteria

COMMUNICATION LINKAGES 4 more
subcriteria

COMMAND LANGUAGE 3 more subcriteria
REPORTING 5 more subcriteria
GRAPHICS 7 more subcriteria

VENDOR SUPPORT 13 more subcriteria
COST FACTORS 6 more subcriteria

HARDWARE AND OPERATING SYSTEMS
CONSIDERATIONS 4 more subcriteria

TABLE 4.2 User-Oriented Evaluation Crite-
ria for DSS Software.
[Reimann and Waren, 1985].

From Table 4.2 we can see that we are
dealing with 77 criteria or attributes grouped in
11 categories. We can think of our decision
matrix Das composed of 61 rows and 77
columns. As we will see later, the algorithms
are especially sensitive to the number of at-
tributes or columns. Hence, 77 attributes are
too many for this example. One common way
of solving this is to consider the 11 categories
as the attributes and assign to each of them the
sum of the weights of the former attributes
contained in that class. This will reduce our
decision matrix to a 61X11 matrix.

16 INGENIERIA

Given the matrix D, a wise thing to do is to try
to reduce the number of alternatives using the idea
of dominance, because elimination of dominated
alternatives will help to get rid of useless data and
will reduce the size of the matrix. The remaining set
of nondominated alternatives sometimes is called
the efficient set or the Pareto-Optimal set. Before
attempting to apply any algorithms to the
nondominated matrix, it is convenient to have some
idea of how big it can be; that is: Given the decision
matrix D of size mxn, what is the expected number
of nondominated alternatives?.

4.2 The number of rows

The following reasoning was developed by
Calpine and Golding [1976].

Assume that the entries of matrix D are random
numbers distributed uniformly from a given ran ge.
Look at the numbers of the nth column, and sort the
rows of D such that the numbers in this last column
are in decreasing order, i.e. the biggest number will
be in row 1. Since we are dealing with random
numbers, the probability of any row of being ranked
in the r' place is 1/m.

Now let us define p(m,n) as the probability that
a row chosen arbitrarily from m rows is
nondominated with respect to n attributes.

Given the r!h row, the ordering established by
the last column ensures that none of the rows below
it dominates this rth row. Hence the row is not
dominated if and only if it is not dominated by the
first r rows (including itself, for simplicity of the
notation) with respect to the first (n-1) attributes.
According to the definition of p(m,n), then the
probability of a row of being nondominated and
being the rth is p(r,n-1)/ m.

The probability of an arbitrarily chosen row of
being nondominated is

m
p(m,n)=p(U row r is nondominated)= & f(r,n-l)fm
r=
m m-1
p(m,n)=limgir{r,n-l)]=l!m[p(m,n-1) + l?:l-llifb(:‘,n-l)]

= l/m [p(m,n-1) + (m-1) p(m-1,n)] .

Leta(m,n) be the expected number of nondominated
alternatives, thatis a(m,n) = mp(m,n). Substituting in
the previous expression we get a(m,n)=a(m, n-1)/
m+a(m-1,n).

This is a recursive definition, using as initial
conditions a(m, 1)=a(l, n)= 1 it can be used to
calculate a good approximation of a(m, n) as:

a(m,n)=1+In(m)+1n2(m)/2! +... + lnk(m)/k! + +
3 In“'z(m)!(n-Z)!_ +ln“'1(m).~“(n-l)! , where B is
Euler’s constant (0.5772).

The following table shows the values of a(m, n) for
some m and n values:

min 2 4 6 8 10 12

10 3.3e40 6.9¢e4+0 9.2¢+0 9.9¢+0 1.0e+1 1.0e+1
100 5.6e+0 2.8¢+1 6.le+1 8.5e+1 9.6e+1 9.9¢+1
1000 7.9¢+0 7.7e+1 2.7e+2 5.5¢+2 7.9e+2 9.2¢+2
10000 1.0e+1 1.6e+2 9.1¢+2 2.6e+3 5.1e4+3 7.3e+3
100000 1.3e+1 3.l1e+2 2.4e+3 9.9¢+3 2.6e+4 4.7e+4

Table 4.3 Values for a(m, n)

The analysis of this table tells us how critical is the
number of attributes in these cases. Note that, in any
given row, the value of the entry rapidly grows to the
value of m. This is consistent with the fact that, forn
large enough, the formula for a(m,n) is very similar
to the polynomial approximation of the ‘exponential
function evaluated atIn(m), thatis a(m,n) exp(ln(m))
= m. This means that for these cases practically all
the alternatives are nondominated,

An important conclusion that can be made from
this analysis is that, independent of what al gorithm is
used, a crucial first stage in the procedure is to do a
careful selection of the attributes to be employed.
This is especially true when m is large, as can be seen
in the bottom row of the table.

On the other hand, even ifn is small, large values
of mare particularly deadly for some algorithms. For
example, some of the best algorithms are based on
linear programming (e.g., LINMAP). But the sim-
plex algorithm is very sensitive to the number of
rows. A reasonable solution for some cases can be

ALVARADO: Multiattribute decision problems:
an algorithm for long matrices

solving the dual linear programming problem,
instead.

In Section Five, for the cases when mis very
large, we present an algorithm that uses some
ideas of expected utility.

5, ANALGORITHM FOR LONG MATRICES.

Here we are interested in cases when the
decision matrix D is very long, that is, when the
set of attributes is small and the number of
alternatives is really large. Just to have an idea,
let us imagine that we are dealing with 20
attributes and one million alternatives. From
Table 4.3 we know that the number of
undominated alternatives is very big. Buteven if
we know that 200,000 alternatives are domi-
nated, it is unrealistic to think that we are going
to browse through this huge table, discarding the
dominated ones, and then go back to start apply-
ing the standard procedures for small tables or
matrices. It is necessary to devise new proce-
dures that browse through the table only once.

5.1 Some definitions

Tobe able to do that, we must have inadvance
some knowledge of what we might expect to find
in the table. A simple, practical approach to this
task is to create some statistical information at the

same time we create the decision matrix. Specifi-

cally, as we already did, for each attribute j we
can define M; as the maximum value of attribute
j for all the tuples represented in the decision
matrix D. Similarly we can define mj as the
minimun. That is,

Mj=Max{ajj}i=1,..,m. m;j=Min{aj}i=1,..,m.

Also we need to create, for each attribute j, a
frequency record. For this, the range of the
domain of j must be divided conveniently. We
don’t deal with this problem here, since that is a
statistical problem out of the scope of our pur-
poses. We just assume that we will be able to
know P(v < X;) for a random variable Xj and v

17

a value in the domain of attribute j. If these
provisions are made at the creation of the table,
then whenever a tuple is inserted, deleted or
modified the corresponding values of M;, mj and
the frequency records are updated.

Usually some of attributes are negatively ori-
ented (e.g. cost, since the smaller the cost the better
if all other conditions remains the same). We are
going to assume that the attributes are positively
oriented, that is, bigger means better. We can do
this without loss of generality, and this way the
mathematical expressions will look simpler.

It is clear that no tuple can be better than (M1,
Ma,...,My), and no tuple can be worse than
(my my,...,mp). Note that, even if we don’t assume
that the attributes are positively oriented, these two
hypothetical tuples can still be constructed, but the
notation would be more cumbersome.

NOTATION.

¢ D = D(ay) is the decision matrix. D is a mxn
matrix of real numbers or, for any particular
column, the data can be taken from a linearly
ordered set.

o We will call (M1, M2,...,My) the ideal tuple,
since nothing in the table can be better than it,
but maybe there is no tuple that matches its
values.

o Let w; be the weights associated with the at-
tributes.

¢ X;j are random variables defined over the do-
mains of the respective attributes.

e X is a composite random variable X =(X,,
Xn)

e Pj(Xj>v)isthe probability that the random
variable Xj is bigger than v.

We know that if a tuple is better, in each
component, than another tuple, then the former is
preferred over the latter, but so far we don’t know
anything else about the preference relation. The
ideal tuple can be used to extend the preference
relation for other pairs of tuples. Given two tuples,
the one “closer” to the ideal tuple should be
preferred over the other. For doing this, we need

18 INGENIERIA

to define clearly what we mean by closer; that is,
we need to define a distance function. A natural
distance function for this case is the weighted city
distance function.

Given a=(a;,..,a,) and b= (by,...,by), d(a,b) is
defined as:

n
d@a,b) = Zw; | aj-bj |
Fl

To prove that indeed d is a distance function
is very simple and will be omitted. Now we can

extend the preference relation as follows:
aPb iff d(a, ideal tuple) < d(b, ideal tuple).
Hence, given a tuple ar, an arbitrary tuple X is

preferred over a, (XPap) iff

n n
Zwi|Mi-Xi| <Zw;|M;-ag <=>
j=1’| j-Xj | j=1’| j-ay |

j=gl w_ij -Wij sznl Wij -Wjag <=2
n n

jzl -wiX; < jgl -wjag <=>

n n

151 wiX; SjEIWjalj <=>

n
X wiXi-ag) =2 0
& i(Xj - a)

Let’s assume that we have already browsed
through the first part of thefile. Let ai be the best
tuple that we have found so far; let’s call it the
incumbent alternative. This tuple ai represents
some utility for the decision maker. The next
obvious question is if there exists some tuple X,
ahead in the file, such that the utility of X
surpasses the utility of the incumbent p/us the cost
of searching for X. That is, we want to find a tuple
X such that

u(X) - C(X) zu(ai).

It is convenient to discuss here some aspects
about the different moments when the values are

calculated: at the present moment we know ai and
the utility it represents to the decision maker,
regardless of the costalready incurred in establish-
ing ai as the incumbent solution. That is, once we
reach ai we must forget the corresponding cost if
we are going to compare its utility against the
potential utility of a future tuple X. The utility of X
is something that lies in the future and may or may
not occur, i.e. we are talking about expected
utility. So, what is the present or actual utility of
X7 Let’s define U as follows:

UX.3) = P(XP2) u(X)-C(X).
Note that for a; U (3;,3)) = u(ay).

This notation for U emphasizes the fact that
the value of U at X depends on the incumbent
alternative. This value can be used as a basis for
the new algorithm, which can be stated as:

5.2 Algorithm

1. Calculate U(X,a,) (later we will show how
it can be calculated).

2. If U (X,a) < u(a)) then STOP; a; is the

“rational” solution.

3. If UX,a)) > u(a;) then fetch the next tuple
to be examined. Let’s call it the candidate
alternative ac.

3.1 If ac PPai then replace ai by ac (i.e. ai...ac)
go to stepi
{Since we know that whatever the functionu is,
it must be consistent with the preference
relation}else go to 3.

Step 2 can be modified according to other
considerations. If the decision maker is a “risk
prone” person, he might decide to continue the
search anyway, if the risk is within his limits of
tolerance. A similar situation can occur in step 3 if
the decision maker ~has risk aversion.

5.3 Calculation of U(X,ai).

U(X,3)) has three components: P(XPa)),
u(X) and C(X). First notice that

ALVARADO: Multiattribute decision problems:
an algorithm for long matrices 19

n
P(XPai) = PSEIWJ(XJ' -35)2 0).
Later we will show how to calculate it.

About the cost function, we also will
postpone its analysis since it may depend on
several factors, for example, human costs,
time costs, use of the facilities, pulling the
tuple together if it is stored at different
places, etc.

Calculation of u(X) presents two prob-
lems. First, we don’t know the function u.
In some sense this is good, because then we

can plug in the formula for U any function u
that the decision maker wants to use. This also

allows different persons (i.e., functions u) touse
the system. Each one simply plugs in his/her
own personal utility function u. Also, in this
sense the procedure is not based on any assump-
tions about characteristics of the utility function
and hence is very general in its scope.

Another possibility is to define here the
utility function (which could be my own per-
sonal utility function) as :

u(b) = -d(b, ideal tuple) + any constant K

The second problem is that, even if we know
the formula for the function u, we still don’t
know the value of X (and we will never know it,
since X is a composite random variable). There
are several possible ways to approach this prob-
lem, all of them based on the idea that X is a
“future” value, something that represents all the
tuples to come. Hence, X can be thought as a
typical averaging value. Since we have statistical
information about each attribute j, we may then
substitute the random variable Xj by the mean G,
of the distribution for attribute j. Other possible
candidates for this substitution are the mode or
the median for each attribute j. The choice can be
made according to each particular case where the
algorithm is applied.

5.4 Calculation of P(XPa,)

We said above that whenever the file (or files)
is updated we also assume that the frequency table
or histogram for each attribute is also updated. For
expressing these ideas more clearly let us define
some notation: When the database is created n
attributes are identified. For each attribute j a range
domain Dj is created (these are not the actual
mininum and maximal values for the attribute, but
the theoretical minimum and maximal allowed
values). This range must be partitioned into a
suitable number h; of slots Let k; be the kth slot
and let fi(k;) be the frequency for that slot.
Hence P;j(Xj,k;), the probability that the ran-
dom variable Xj is in the kth slot, is defined as
P(Xj,k;) = fj(k;)/m.

n

Notation: Let Ty = Z W;g;
Fl

We said before that
n

P(XPai)=P(£ wj (X] -aij) >0).
Fl

When we have only one attribute this for-
mula becomes:

p(xPai)=P(wl(Xl -a,,)20) =

h1
P((X1-3j1) > 0) = X P1(Xy,k1).
Ki=L1

Here Ll is the slot number where T],*'w1L =a;; was
counted.

Notation: Let L =floor(T,/w,) (i-e. the integer
part or floor of the number).

Forn = 2 we have to find P(E2). Where Es is the
event

Ep:w1 X1 +w2Xo 2wiaj+ waap(=Ta).

A very important note. We are going to
assume that the random variables are indepen-
dent. Conceptually this makes sense, since the
attributes should be independent; otherwise
we can express some of them through others

20 INGENIERIA

and reduce the number of attributes. We have
already seen that reducing the number of at-
tributes is very important.

For Ex(see Fig. 5.1), when X;=k; then Xy =
(T2 - wik1)/wo- Hence ko should start at Ly =¢
(T2 - wiky)/wo-

hl1 h2
P = X I PMX,k)P(X k)
€)= I I PO k)P,

Let us do it once again for n=3.

Ez3:wiX;+waXo+ w3X3>wiaj+ woajo +
w3aj3(=Tj).

For E3, when X; =k;j and X, = ko then X3= (T;3-
wiki-waka)/ws,

Hence ky should start at Ly =((T3-w k- ky)/wy,
hl h2 b3

P(E3)= X

kl=1k2=1k3=L3

(See Fig. 5.1atthe end). So, the general formula is:

hl h2 h3 hn
PEJ)=E% T I I ITPj(Xjkj), where
K=l 12=] B=l keln j=1

L =floor((Ty - wiky-woks..... -wr-1Kr-1)/ W)

We can prove now this formula inductively. For
(n+1) we have:

Ent1iwiXy+ +. 4w X+ Wn+1Xn+1-Wiaj +
*ooo FWndin+ Wit 18504+ 1(=Th+1).

Now, let’s shift the index: sh(j) = j-1.

Ent1:woXo+wi X +... +wXp-woajo+
Widj1 +.. +Wnain(= Tp+1). (see Fig. 5.2)

hl
Now P(E_ +1) =mEIP(En) Py(X k),

where = floor (T, /w,. Since we have already
used woko “units” from Tu 4+ then P(En) must be
calculated for T = wk

T ROk P0G P,

h2 T AT RSP SrTr T ATASrrTp ey
o R I I '} U T
.:..l-.....{-l.....-‘.-I..‘..i-s..!-.'.-".'-.g-t
sbedadatababalodod oLt i ay
Illlll!l‘.lll'l.Ez
bl dadabebobate de b ol o e e d
L L I e e e T T T]
-\"\-Q—Q"'-I"-I"l"l"i‘P'P‘l""l"!'i'l
[] L] L] L]]
.-:..:..:.i.!.-!...'._:..:-.‘-:._:.'..'....-.'__'-}
bl dodatatab e dod b b al L Jod
[] LR T T T T
o dmbat o B L T Sy S S Y
LI R | LI L D R B R |
dap=f=f R bd o B Rt £ £
o
: i-bdebded-d
dobobt_ L g 0L
LR T]
dabek ebale dedob
o e .
h, X

Fig 5.1 Calculation of P[E,]

n-dimensional.
axis

Fig 5.2 Calculation of P[E]

RO Wl h2 O v)
PE D)= T D Suunozs dImeek)
kO=1 ki=1k2=1 kn=La+1j=0 ' 7

Now,let us reverse the shift index:
shlG)=j+1.

P(E_4+1) = I v'aZiuvziobe L TIP®X,k)
n k=1 ©=2 B=3 gyijelatl j=11 1

5.5 About the cost function

The calculation of the cost of alternative X
may be influenced by several factors. Some of
them would be technical, such as use of long

ALVARADO: Multiattribute decision problems:
an algorithm for long matrices 21

distance networks or pagination. Other costs
may involve salaries, royalties, etc. All this
implies that we cannot devise, in advance, a
formula for the cost function valid for all situa-
tions. In this sense this will always be an “open”
formula; that is, it must be modified for each
particular case.

It is important to remark here that we are not
deciding whether or not to retrieve a record,
based on the cost of the information; this was
considered in the first part of the general for-
mula. What we want to do is to calculate the cost
of that information. One other obvious fact, but
very important to remark, is that the costs must
be measured with the same type of units with
which the expected utility is measured.

It is convenient to consider several phases in
the cost analysis. The first phase should be to
devise an strategy for the file search. The second
phase should be some procedure to aggregate
some “local” cost; and the third phase should be
some considerations about how to calculate those
local costs. In order to understand this procedure
it will be helpful to state, as clearly as possible,
the type of scenario that we have in mind. Weare
considering the case when the decision matrix D
is physically spread over several files and in
different locations; for example, the data for
several of the alternatives might be in filel, the
data for other alternatives might be in a distant
file2, the data for some of the attributes for some
other alternatives might be in file3, the data for
the complementing attributes might be in file4,
etc.

The decision about where to start the search
may be another multiple criteria decision mak-
ing problemitself. So far, we can only give some
common sense heuristics such as:

o Start the search at those files most likely to
contain “good” records.

o In case of ties, choose first the file cheaper to
get.

e If some records are spread across several files,
it doesn’t make sense to retrieve the information
for onerecord at a time. Each time you scan some
of those files, try to retrieve the information for
the maximum number of records possible. This
idea will be more clear after reading the descrip-
tion of the third phase.

For the second phase we can build a simple
model to help us to keep track of all the different
costs.

As we said before, the data for the decision
matrix might be spread in several files and also in
several forms. Since each of these possible combi-
nations may have its own “local” cost function, it
is better to create a table that looks more or less
like:

Alternative\File filel file2 ... filef..... fileF
a, n 0 0 0
a, n 0 0 0
a, n 0 0 0
a N1 Mo Oef 0p
4m a1l "m2 Onf MmF
where ne= number of attributes for alterna-

tive r that can be found in file f. Note that, for each
row, the sum of all its entries must be equal to n,
that is:

n, = n
1 'K

At first glance this matrix looks very large and
indeed it is; but there will be large groups of rows
which are identical; hence, the information can be
stored using small amounts of memory. For ex-
ample, assume that we have 15,000 records, with
10 attributes each, distributed over 5 files as
follows:

22 ' INGENIERIA

Alternative\File filel file2 file3 file4 fileS
1 10 0 0 0 0
2 10 0 0 0 0
4000 10 0 0 0 0
4001 0 3 4 0 3
10000 0 3 4 0 3
10001 0 3 0 7 0
15000 0 3 0 7 0

This information could be stored in several
forms; for example:

[1...4000] © (10,0,0,0,0)
[4001...10,000] ©(0,3,4,0,3)
[10001... 15,000] > (0,3,0,7,3).

Let c . be the cost of retrieving the data for
attribute j” for alternative r from file f. For this
aggregation phase we can make two reasonable
assumptions: First, for a given file, we can assume
that the cost per attribute is the same for all
attributes; that is:

¢ = Cp foralljin filef.

rfj

Note that this assumption is not strictly neces-
sary, but it- makes the formulas simpler; c of is then
the potential cost of retrieving the information for
record r for any attribute from file f. We call this the
potential cost since for some records the actual cost
may be zero; for example, if it is only possible to
retrieve records in lots of certain minimum size. In
these cases, there is some cost for retrieving the first
record of the lot (the cost of the lot), the rest are free

The second assumption is that any given file
contains the same number (80) of attributes for each
record that the file provides information. That is, in
a given column, all non-zero entries are equal.

We can then calculate ¢ o> the cost of retriev-
ing record r as: F
¢c.= X n,c
r k “rk
=t

The third phase of the cost analysis deals with
the problem of how to calculate these local ¢ pcost
functions. Here we are focusing our attention on a
given file. As in the previous phases, here we may
have many factors, such as if the file is online, if it
is a local file or if we have to use some network
facilities to access it, page sizes handled by 1/O
devices and operating systems, etc.

I think that the idea of economical lot size is
valid in most of the situations mentioned above; we
can approximate the cost function with a linear
function such as:

C(r) = K + u-r for 1<r<LS (LSisthe lotsize).

The value of K is some set up or initial cost and
u is a marginal cost. In these cases, the value of C.p
would be:

cg=C(LS) if r is the first record of the lot, 0
otherwise.

5.6 Summary of results;

We showed a formula for calculating the value
of U(X,a)). Based on the values of this formula
we constructed the algorithm shown later.
Since the formula is composed of several
parts, in the next sections we showed how to
calculate the different parts that constitute the
formula for U(X,a),

6 Conclusions

We mentioned the existence of many methods
for dealing with multiple criteria decision prob-
lems. This fact tells us that this is a far from solved
problem. Several factors intervene to create this
situation. First, subjective preferences play an
important role in these problems, hence the accept-
able solutions may vary for different persons.
Second, we don’t have a “natural” linear or total
order for R" (n>1). Since we can build several
orders then we can have different solutions. Third,
there is an important difference between the meth-
ods for multiple attribute decision making and
some other classes of methods such as linear pro-

ALVARADO: Multiattribute decision problems:

an algorithm for long matrices

gramming or sorting files. In these cases we
design a method to find the solution, but it is clear
what the solution is. By contrast, in MADM we
might say that we design the solution; this is so,
since is not always clear what the preference
relation is.

Mathematicians and other scientists have been
studying this type of problems for many years.
Some progress has been made; but unfortunately
many of the methods developed are theoretically
sound but not very useful in practical situations;
this is mainly due to long and complicated calcu-
lations and checking the truth status of some
conditions.

The existence of many methods for MCDM,
and the wide variety of them, is also due to the fact
that they assume different types of information as
input for the models. Some of these methods
require long and tedious calculations and ques-
tioning sessions with the decision maker in order
to gather information about his/her particular
preferences. Often these questions are about hy-
pothetical and strange situations. Theoretically,
these methods could yield good results; in prac-
tice they are seldom used, precisely because they
are very impractical.

Lately the use of MADM has been closely
related to DSS and Expert Systems; hence it
seems that as these two type of systems are
becoming more and more important, the same
will be true for MADM. The computer imple-
mentation of MADM, within the context of DSS
or ES, must take care of some problems that did
not exist when scientists were dealing only with
theoretical models. These are basically problems
related to information retrieval. Usually informa-
tion has an associated cost (computational costs)
due to retrieving; in some cases this might affect
what the final solution is. This may be specially
true for cases where the marginal utility is small
if compared with the marginal cost. Hence, these
factors should be incorporated in the MADM.
The model we presented in section 5. tries to
accomplish this task, that is, to incorporate com-
putational and cost factors into the model.

The model for long matrices is mostly new
material. It is based on some well known concepts
such as expected value, utility function, fre-
quency distribution, setup costs, etc. However
the model itself is a new contribution. My contri-
bution here is mostly the building of a new
framework, upon which the models previously
mentioned are based.

This new framework becomes an enhance-
ment of those models. Their integration into a
DSS perspective makes them more useful; since it
is now more clear what their role is among the
different pieces of software necessary to provide
help to the decision maker.

7. Future work

The model we presented in section 5. is still far
from being a well tested method. It is mainly a
theoretical model. Also, it is not a very sophisti-
cated model froma statistical point of view. There
is still plenty of room for improvement in that
sense; but I think that the algorithm presented is
a good starting point.

The accuracy of the algorithm may be im-
proved if we know, or assume, some specific
distribution functions for the attributes. So far we
have used only very simple frequency ¢ables in
order to calculate P(XPa,). But if we know, for
example, that some of the attributes follow a
Poisson distribution or a binomial distribution,
etc., then we can calculate the value of P(XPa))
more accurately.

BIBLIOGRAFHY

Alvarado, R. Elproblemadel valor multiatributo.
Una aproximacion desde la Teorfade Juegos.
Ciencia y Tecnologia V9, N1, 7-10, 1985.

Alvarado, R. Un algoritmo para la toma de
decisiones en el caso de multiples criterios.
Ciencia y Tecnologia V12, N1, 1988.

Bell, D and Farquhar, p. Perspectives in utility
theory. Operations Research V34, N1, 179-
183, January 1986.

24 INGENIERIA

Bui, T. Building effective multiple criteria deci-
sion models: 4 decision support systems ap-
proach. System. Object. Solut._ V4, N1, 3-
16, January 1984.

Calpine, H.C. and Golding, A. Some properties
of Pareto Optimal Choices in decisions prob-
lems._ Omega. V4, N2, 1412-17, 1976.

Czogala, €. Multicriteria decision making in
terms of probabilistic sets. Uncertainty and
Intelligent Systems, Proceedings. Lecture
Notes in Computer Science N313, Springer
Verlag, N.Y., 366-372, 1988.

Fishburn, p. ¢. The Foundations of Expected
Utility. Dordrecht, Holland, 1982.

Fishburn, p. c. _Utility Theory for Decision
Making. Wiley, N. Y., 1970.

Fishburn, p. c. Nonlinear Preference and Utility
Theory. John Hopkins U. Pr., Md, 1988

Holsapple C. and Whinston, A. Decision Support
Systems: Theory and Applications. Springer
Verlag, Berlin, 1987.

Hwang, c. and Yoon, K. Multiatribute Decision
Making. Methods and Applications. Lecture
Notes in Economics and Mathematical Sys-
tems, Springer Verlag, Berlin, 1981.

Karp, R. Upfal, E. and Widgerson, A. Are search
and decision programs computationally
equivalent? Theory of Computing. Proceed-
ings. ACM 17 Symposium, 464-475, May
1985 .

Keeney, L. R. and Raiffa, H. Decisions with
Multiple Objectives. Wiley, N.Y. 1976

Kraft, D.H. and Buell, D. Advances in a Bayesian
decision model for user stopping behavior for
scanning the output of an information re-
trieval system. In Research and Development
in_Information Retrieval. Edited by C.J.
Rijsbergen, pp. 421431, 1984,

Lazimy, r. Solving multiple criteria problems
by interactive decomposition. Mathematical
Programming. V35, N3, 334-361, July
1986.

Liebowitz, 1. Beyond decision support systems:
The role of operations research in expert
systems. _Computers and Industrial Engi-
neering. V14, N4 , 415-418, Set. 1988,

Marcotte, Q. Soland, R. An interactive branch
and bound algorithm for multiple criteria
optimization. Management Science. V32,
N1, 61-75, January 1986

Mitra, . (Editor). Mathematical Models for
Decision Support. Springer-Verlag, Berlin,
1988.

Moore, J.C. and Whinston, A. B. A model for
decision making with sequential informa-
tion-acquisition. Part I. Decision Support
Systems. V2, N4, 285-307, 1987.

Moore, J.C. and Whinston, A. B. A model for
decision making with sequential informa-
tion-acquisition. Part II. Decision Support
Systems.V3, N,1, 47-72, 1987.

Moore, J.C. and Whinston, A. B. A decision
theoretic approach to file search. Computer
Science in Economics and Management V1,
N1, 3-20, January 1988.

Raiffa, H. Decision Analysis. AddisonWesley,
Reading, Mass., 1970

Reimann, B. and Waren, A. User oriented crite-
ria for the selection of DSS software.
Communications of ACM, V28, N2, 166-
179, Feb. 1985.

- Vetschera, R. An interactive outranking system

Jor multiattribute decision making. _Com-
puters and Operation Research. V15, N4,
311-322, July 1988.

ALVARADO: Multiattribute decision problems:

an algorithm for long matrices

Weber, M. A method of multiattribute decision
making with incomplete information. Man-
agement Science. V31, N22, 1372-1389,
Nov. 1985.

Yu, P.L. and Leitmann, G. Nondominated deci-
sions and cone convextity in dynamic
multicriteria decision problems.
Multicriteria_Decision Making and Differ-
ential Games. Edited by George Leitmann.
Plenum Press, N. Y., 1976.

25

Yu, P.L. Lee, Y. and Stam, A. Multicriteria
Decision Making: Concepts, Techniques
and Extensions. Plenum Press, N.Y.,
1985.

Zionts, S. Multiple criteria mathematical
programming. An overview and several
approaches. Mathematics of Multiple Ob-
jective Optimization. Proceedings. Courses
and Lecture Notes N289, Springer Verlag,
N.Y., 227-273, 1985.

