INGENIERIA

Revista Semestral de la Universidad de Costa Rica
Volumen 7, Enero/Junio 1997 Número 1

DIRECTOR
Rodolfo Herrera J.

CONSEJO EDITORAL
Víctor Hugo Chacón P.
Ismael Mazón G.
Domingo Riggioni C.

CORRESPONDENCIA Y SUSCRIPCIONES
Editorial de la Universidad de Costa Rica
Apartado Postal 75
2060 Ciudad Universitaria Rodrigo Facio
San José, Costa Rica

CANJES
Universidad de Costa Rica
Sistema de Bibliotecas, Documentación e Información
Unidad de Selección y Aquisiciones-CANJE
Ciudad Universitaria Rodrigo Facio
San José, Costa Rica

Suscripción anual:
Costa Rica: ₡ 1 000,00
Otros países: US $ 25,00

Número suelto:
Costa Rica: ₡ 750,00
Otros países: $ 15,00
REFRIGERANTE 22: UNA ALTERNATIVA PARA NUEVOS SISTEMAS DE REFRIGERACIÓN COMERCIAL CON TEMPERATURAS MEDIA Y BAJA

Ing. Mark Bloomfield Foster
Ing. Jorge Lafuente Guevara
Profesores Escuela de Ingeniería Mecánica

RESUMEN

El presente trabajo pretende colaborar en la toma de decisiones, con respecto al diseño de nuevos sistemas de refrigeración comercial, así como en la selección de refrigerantes, de acuerdo con las nuevas políticas que propone el Protocolo de Montreal y del cual Costa Rica forma parte. El artículo plantea el por qué el refrigerante 22 puede ser considerado una alternativa de los refrigerantes R-12 y R-502 que actualmente se están eliminando.

SUMMARY

The purpose of this article is to help in decision making with respect to the design and selection of new commercial refrigeration systems and the selection of refrigerants in agreement with the actual policies of The Montreal Protocol of which Costa Rica is a member. The article explains reasons why refrigerant 22 should be considered as an alternative to refrigerants 12 and 502 that are being eliminated.

1. RESEÑA HISTÓRICA

La primera patente de un sistema de refrigeración por compresión de vapor se otorgó al inglés Jacob Perkins en 1834. El señor Perkins patentó una máquina de hielo que usaba éter como refrigerante.

En el año 1850 el señor Alexander Twining empezó a diseñar y a construir comercialmente máquinas de hielo cuyo refrigerante era éter eficaz. Estas máquinas tenían grandes motores que se movían con máquinas de vapor y se usaban principalmente para producir hielo, preparar cerveza y almacenar frío. A partir de la década de 1890 las máquinas de refrigeración se hicieron más pequeñas y fueron activadas por motores eléctricos. Lo anterior hizo que su uso se extendiera a carnicerías y a algunas residencias, convirtiéndose en refrigeradoras domésticas.

En la década de los años veinte, se produjo una serie de malas experiencias con el uso de algunas de las sustancias empleadas como refrigerantes. A este acontecimiento se le dio mucha publicidad y así las personas se enteraron que las fugas provocaron un gran saldo de muertos y heridos; por esta razón, prohibieron su uso. Lo anterior motivó la necesidad de desarrollar nuevos y seguros refrigerantes para uso residenrial y en 1928, la Frigidaire Corporation encargó a los laboratorios de investigación de la General Motors.

1 Debe entenderse que el término “alternativa” no significa sustitución del refrigerante en un sistema existente sino como refrigerante para ser considerado en el diseño de nuevos sistemas.
el desarrollo urgente de un nuevo refrigerante. Surgió así, en tres días, el R-21. Este fue el primero de los clorofluorocarbonos (CFC’s).

Después de 1931 se producía comercialmente una serie de CFC’s, siendo los más comunes el R-11 y el R-12. Este último fue el más conveniente para los sistemas comerciales de la época. En los años siguientes se desarrollaron otros refrigerantes que contienen CFC’s como R-502, muy usados en sistemas de baja temperatura y otros llamados como HCFC’s de los cuales el más conocido es el refrigerante R-22, utilizado más comúnmente en los sistemas de aire acondicionado.

Actualmente se sabe que los refrigerantes CFC’s causan mucho daño al ambiente global y existe un acuerdo, entre la mayoría de los países en el mundo, relacionado con el control de estos refrigerantes y también de los HCFC’s. Este acuerdo se conoce como “El Protocolo de Montreal”.

2. PROTOCOLO DE MONTREAL

En relación con los aspectos relacionados con la legislación Nacional y sobre la interpretación de la Normativa de Montreal, es importante aclarar que la legislación nacional debe confor- marse con la Normativa y sus acuerdos. Por lo tanto, como Costa Rica es miembro del Protocolo de Montreal, y son estas normas las que rigen en nuestro país.

Para aclarar cuáles son los aspectos más importantes de esta normativa puede observarse las siguientes tablas en las que se encuentran, en forma resumida, algunos datos y características de los refrigerantes mencionados.

Debido a los perjudiciales efectos de los CFC’s sobre la capa de ozono (medido mediante el índice ODP*) y al efecto invernadero (calentamiento global referido mediante el índice GWP*) de la Tierra, una buena parte de los países del mundo suscribieron el Protocolo de Montreal.

<table>
<thead>
<tr>
<th>REFRIGERANTE</th>
<th>FECHAS</th>
<th>PROGRAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12 y R-502</td>
<td>Julio 1999</td>
<td>Congelamiento de importación de los niveles promedio 1995-1997</td>
</tr>
<tr>
<td>R-12 y R-502</td>
<td>Enero 01. 2005</td>
<td>Congelamiento de importación a 50% de los niveles promedio 1995-1997</td>
</tr>
<tr>
<td>R-12 y R-502</td>
<td>Enero 01. 2010*</td>
<td>Congelamiento total de las importaciones</td>
</tr>
<tr>
<td>R-22</td>
<td>(Enero 01. 2030)**</td>
<td>(Eliminado de producción en los E.E.U.U.)**</td>
</tr>
<tr>
<td></td>
<td>Enero 01. 2040</td>
<td>Congelamiento total de las importaciones</td>
</tr>
</tbody>
</table>

*Recientemente Costa Rica se comprometió a eliminar todas estas sustancias en el año 2006.
**Para los Estados Unidos de Norteamérica.

La Tabla 2 presenta una comparación de algunos índices importantes del comportamiento de algunos refrigerantes.

2 Documento aprobado en Montreal, Canadá, el 16 de setiembre de 1987 y que está relacionado con las sustancias agotadoras de la capa de ozono.
TABLA 2
Factores ambientales y de seguridad.

<table>
<thead>
<tr>
<th>Refrigerante</th>
<th>°ODP</th>
<th>°GWP</th>
<th>**Seguridad</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12 (CFC)</td>
<td>0.93</td>
<td>3,700</td>
<td>A1</td>
</tr>
<tr>
<td>R-115 (CFC)</td>
<td>0.38</td>
<td>13,800</td>
<td>A1</td>
</tr>
<tr>
<td>R-22 (HCFC)</td>
<td>0.05</td>
<td>610</td>
<td>A1</td>
</tr>
<tr>
<td>R-502(CFC/HCFC)</td>
<td>0.22</td>
<td>7,300</td>
<td>A1</td>
</tr>
<tr>
<td>R-134a (HFC) nuevo refrigerante</td>
<td>0</td>
<td>400</td>
<td>A1</td>
</tr>
</tbody>
</table>

Ref. ASHRAE Journal, Enero 1992
ODP. Ozone Depletion Potential.
(Potencial de disminución del ozono), referido al R-12
GWP. Global Warming Potential.
(Potencial de calentamiento global), referido al R-12
A = Poca toxicidad, I = no es inflamable (Ref. ASHRAE STD.64)
**Ref. RSES * Journal, Diciembre 1996 y Supplement 620-95A

con el fin de limitar la producción y el uso de estas sustancias. Costa Rica se unió al mismo a partir del 08 de mayo de 1991. En el Protocolo de Montreal se han establecido una serie de condiciones con respecto al uso de los refrigerantes cuestionados por lo que, con la eliminación de las importaciones de R-12 y R-502 a Costa Rica (permitidas hasta el año 2000), es de mucha importancia para la empresas, ingenieros y técnicos que emplean estos refrigerantes tener criterios que les permitan tomar decisiones sobre el tipo de refrigerante més apropiado para sus nuevas instalaciones y para la recarga y mantenimiento de los sistemas existentes. Se pretende que el presente trabajo dé respuesta a muchas de las inquietudes que surjan por causa de estas limitaciones.

TABLA 3
Precios aproximados y disponibilidad actual.

<table>
<thead>
<tr>
<th>Refrigerante</th>
<th>Precio colones</th>
<th>Disponibilidad en el país</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>e784/Kg (e356/lb)</td>
<td>Disponible</td>
</tr>
<tr>
<td>R-22</td>
<td>e890/Kg (e404/lb)</td>
<td>Disponible</td>
</tr>
<tr>
<td>R-502</td>
<td>e4010/Kg (e1822/lb)</td>
<td>Disponible</td>
</tr>
<tr>
<td>R-134a (reemplazo R-12) *</td>
<td>e2358/Kg (e1072/lb)</td>
<td>Disponible</td>
</tr>
<tr>
<td>Serie 400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-401 a,b,c (reemplazo R-12) *</td>
<td>e3302/Kg (e1500/lb)</td>
<td>En pequeñas cantidades</td>
</tr>
<tr>
<td>R-402 a,b (reemplazo R-502) *</td>
<td>e4658/Kg (e2116/lb)</td>
<td>En pequeñas cantidades</td>
</tr>
<tr>
<td>R-404 a (reemplazo R-502) *</td>
<td>e5425/Kg (e2465/lb)</td>
<td>En pequeñas cantidades</td>
</tr>
</tbody>
</table>

*Ref. RSES * Journal, Dic 1996.
Tipo de cambio e238/US$8

3. **SITUACIÓN ACTUAL DEL PAÍS CON RESPECTO AL USO DE REFRIGERANTES**

A continuación se presenta la Tabla 3 con la indicación de los precios aproximados y la disponibilidad de los refrigerantes más utilizados.

4. **GENERALIDADES SOBRE LOS REFRIGERANTES COMUNES EN SISTEMAS DE REFRIGERACIÓN**

R-12
Hasta hace unos años era el refrigerante más popular, tal vez por su precio relativamente

2 Documento aprobado en Montreal, Canadá, el 16 de setiembre de 1987 y que está relacionado con las sustancias agotadoras de la capa de ozono.
3 ASHRAE: American Society of Heating Refrigerating and Airconditioning Engineers
4 RSES: Refrigeration Service Engineer’s Society
5 Ozone Depletion Potential (Potencial de Disminución del Ozono)
6 Global Warming Potential (Potencial de Calentamiento Global)
7 Gaceta No. 86 del 08 de mayo de 1991 y Gaceta No. 101 del 29 de mayo de 1991.
8 Tabla 1
bajo y sus características termodinámicas apropiadas para la mayoría de las aplicaciones (temperaturas medias) en las instalaciones comerciales e industriales de medio tamaño.

Sin embargo se ha probado que es uno de los refrigerantes que más daña la capa de ozono y el Protocolo de Montreal ha eliminado gradualmente producción y su consumo, como es el caso de Costa Rica (ver Tabla 1). Al reducirse su producción su precio está subiendo y hoy día hay poca diferencia en su precio comparado con R-22.

El R-12 se ha empleado tanto en sistemas de refrigeración como en sistemas de aire acondicionado pero, por la relación existente entre su temperatura y presión de saturación, sus usos, bajo ciertas condiciones de temperatura de vaporización, no son apropiados. Así por ejemplo, su uso no se recomienda en sistemas de refrigeración con temperatura de vaporización muy baja, por ejemplo -30 °C (-22 °F). A estas condiciones le correspondería una presión de saturación (al nivel del mar) de aproximadamente, 1 bar (14.7 psia). Las temperaturas menores corresponderían a presiones manométricas negativas (o de vacío), y hasta donde sepa posible no es recomendable que un sistema de refrigeración funcione con un vacío debido a la posibilidad de la entrada de aire y humedad en el sistema. En estas condiciones de baja temperatura de vaporización se ha recomendado emplear R-502.

Tampoco se ha usado normalmente el R-12 en los sistemas de aire acondicionado con temperaturas de vaporización mayores a 5 °C (41 °F) (excepto los armados en sitio). Para estas condiciones se ha preferido el uso del R-22 que tiene algunas características y propiedades termodinámicas más apropiadas para este ámbito de temperaturas.

R-22

Es otro refrigerante relativamente popular. Por el bajo volumen específico del vapor que tiene como resultado el empleo de cantidades menores en varios componentes del sistema, se utiliza muy frecuentemente en sistemas de paquete. Su precio, históricamente, ha sido como el doble del R-12. Pero como se ha mencionado, hoy día los precios de ambos (R-12 y R-22) son similares. Se ha usado en sistemas de Refrigeración, generalmente para temperaturas bajas debido a que su presión de saturación es relativamente alta comparada con su temperatura de vaporización.

El Protocolo de Montreal estipula que la fecha límite para su producción y venta (en los E.E.U.U.) es al año 2030 (ver Tabla 1). En Costa Rica su importación será congelada en el año 2040. No es un refrigerante que dañe a la capa de ozono, pero contribuye ligeramente al calentamiento global (ver Tabla 1).

R-502

También muy usado en los sistemas de refrigeración, especialmente en los sistemas de baja temperatura. Normalmente es más caro que R-22. Es un azoetrópico que contiene R-22 y R-115. Debido a su contenido de R-115, un CFC que daña la capa de ozono y que también contribuye significativamente al calentamiento global, su eliminación está programada de la misma manera que el R-12.

En el caso de que estos refrigerantes tuvieran contacto con productos comestibles, normalmente no afectaría el sabor y la mayoría de los técnicos están acostumbrados a trabajar con estos refrigerantes.

R-717(Amoniaco)

Es un refrigerante muy utilizado en los sistemas industriales de refrigeración, generalmente donde se puede aislar la planta de refrigeración de las áreas de trabajo. Lo anterior se toma como una precaución debido a la toxicidad del refrigerante. Su costo es el más bajo de todos aunque tiene una capacidad de enfriamiento por unidad de masa del refrigerante recirculando, mucho mayor que los demás refrigerantes.

Este refrigerante no afecta la capa de ozono ni contribuye al calentamiento global. (ASHRAE: Journal Jan 92)

No debe tener contacto con productos comestibles debido al efecto del sabor transferido al producto (por ejemplo en el caso de fugas dentro de una cámara frigorífica). Para el mantenimiento de los equipos cargados con este refrigerante normalmente se necesita un técnico especializa-
do a tiempo completo, con amplios conocimientos de estos sistemas. A veces no es fácil encontrar la persona apropiada.

R-134a

Es el nuevo refrigerante propuesto como alternativa para el R-12; actualmente se encuentra disponible en Costa Rica. Su precio es muy elevado comparado con el R-12 y el R-22 aunque posiblemente poco a poco, irá disminuyendo por el incremento de uso. Tiene características parecidas al R-12 pero no se puede cargar en sistemas existentes con R-12, debido a algunas características químicas diferentes. Este refrigerante no afecta la capa de ozono y contribuye muy poco al calentamiento global.

Refrigerantes serie 400

Estos son refrigerantes que se están produciendo como sustitutos para los refrigerantes R-12, R-22 y R-502. Tienen la ventaja de que se pueden sustituir directamente en los sistemas existentes, con solo cambiar el tipo de aceite lubricante en los compresores.

Son mezclas zeotrópicas de algunos refrigerantes poco perjudiciales para la capa de ozono y contribuyen muy poco al calentamiento global. Debido a que son zeotrópicos, en algunas fases de las mezclas cada componente se comporta como si fuera independiente. Por lo tanto en los diferentes componentes del sistema de refrigeración donde se encuentra el refrigerante en fase "líquido" y fase "vapor" es posible que los refrigerantes en la mezcla puedan variar su estado. Mientras el sistema funcione sin fugas no hay problemas. Pero si existiera una fuga del refrigerante es posible que la mezcla de los refrigerantes que salen del sistema no se encuentren saliendo en la misma proporción que originalmente constituyeron el compuesto. Cuando se agregue al sistema el refrigerante necesario para compensar la fuga, la mezcla se desproporciona, ofreciendo diferentes características termodinámicas que, posiblemente, no sean apropiadas para el sistema. El uso de estos refrigerantes es muy nuevo en Costa Rica y se tiene dudas acerca del conocimiento y manejo que del mismo tengan los actuales técnicos.

Su precio es también relativamente alto y se consideran refrigerantes transitorios.

5. SELECCIÓN DE LOS REFRIGERANTES

Una de las principales decisiones que debe tomar en cuenta el ingeniero al diseñar un sistema de refrigeración, es escoger la sustancia de trabajo o refrigerante. Como ya se mencionó, existe una gran cantidad de sustancias que se pueden seleccionar, como los CFC's, HCFC's, HCF's, amoniaco, también algunos hidrocarbonados, dióxido de carbono, aire e incluso agua. La sustancia seleccionada dependerá de las condiciones particulares de trabajo y las características requeridas del sistema de refrigeración.

De todas las sustancias posibles, el mercado mundial se decide en un 90% por los denominados CFC's, HCFC's, HCF's y el amoniaco. El uso principal de algunos de estos refrigerantes ha sido:

R-11 (CFCL), en enfriadores de agua de gran capacidad empleados en sistemas acondicionadores de aire.

R-12 (CF2CL2), en sistemas de refrigeración doméstica y en sistemas de acondicionamiento de aire en automóviles.

R-22 (CHF2CL), en sistemas de conservación y refrigeración de productos perecederos de tipo industrial y aire acondicionado.

R-502 (mezcla azoótropica de R-22 y R-115), usado mayormente en sistemas de refrigeración comercial e industrial con necesidad de baja temperatura.

R-717 (amoniaco) usado en sistemas industriales de refrigeración.

Por muchos años se ha utilizado el refrigerante 12 (R-12) como la sustancia de trabajo en
las instalaciones comerciales que funcionan con temperaturas de vaporización entre -10 °C (14 °F) y 5 °C (41 °F) y el refrigerante 502 (R-502) en las instalaciones con temperaturas de vaporización menores a -10 °C (14 °F).

6. **COMPARACIÓN DE LAS PROPIEDADES TERMODINÁMICAS DE R-12, R-22 Y R-502**

Para comparar las propiedades termodinámicas de los refrigerantes R-12, R-22 y R-502 para las condiciones de operación en sistemas de aire acondicionado y refrigeración mencionadas, se han elaborado las tablas No. 4, No. 5, No. 6 y No. 7.

En estas tablas se presentan comparaciones de algunas características termodinámicas importantes relacionadas con el ciclo de refrigeración, todos con temperaturas de condensación de 40 °C (ver Tablas No. 4, 5 y 6) y con temperatura de condensación de 46 °C (Tabla 7).

Efecto refrigerante: Calor absorbido por el refrigerante en el evaporador. KJ/kg del refrigerante recircularlo.

TABLA 4
Comparación entre R-12 y el R-22 para temperatura de vaporización de 5 °C

<table>
<thead>
<tr>
<th>Refrigerante</th>
<th>Presión de vaporización bar</th>
<th>Temperatura de vaporización °C</th>
<th>Calor latente de vaporización KJ/Kg</th>
<th>Efecto refrigerante KJ/kg</th>
<th>Desplaz. volumétrico l/s kw cap.</th>
<th>Potencia teórica del compresor Kw/Kw cap.</th>
<th>Temperatura de descarga °C</th>
<th>Coeficiente de rendimiento</th>
<th>Eficiencia volumétrica %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>3.65</td>
<td>5</td>
<td>149</td>
<td>115.69</td>
<td>0.412</td>
<td>0.149</td>
<td>44.7</td>
<td>6.68</td>
<td>84</td>
</tr>
<tr>
<td>R-22</td>
<td>5.84</td>
<td>5</td>
<td>201</td>
<td>155.00</td>
<td>0.262</td>
<td>0.163</td>
<td>53.0</td>
<td>6.20</td>
<td>83</td>
</tr>
</tbody>
</table>

TABLA 5
Comparación entre R-12 y el R-22 para temperatura de vaporización de -10 °C

<table>
<thead>
<tr>
<th>Refrigerante</th>
<th>Presión de vaporización bar</th>
<th>Temperatura de vaporización °C</th>
<th>Calor latente de vaporización KJ/Kg</th>
<th>Efecto refrigerante KJ/kg</th>
<th>Desplaz. volumétrico l/s kw cap.</th>
<th>Potencia teórica del compresor Kw/Kw cap.</th>
<th>Temperatura de descarga °C</th>
<th>Coeficiente de rendimiento</th>
<th>Eficiencia volumétrica %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>2.19</td>
<td>-10</td>
<td>156</td>
<td>108.6</td>
<td>0.705</td>
<td>0.241</td>
<td>48</td>
<td>4.15</td>
<td>73</td>
</tr>
<tr>
<td>R-22</td>
<td>3.54</td>
<td>-10</td>
<td>213</td>
<td>150.0</td>
<td>0.435</td>
<td>0.267</td>
<td>65</td>
<td>3.75</td>
<td>73</td>
</tr>
</tbody>
</table>

TABLA 6
Comparación entre R-12 y el R-22 para temperatura de vaporización de -30 °C

<table>
<thead>
<tr>
<th>Refrigerante</th>
<th>Presión de vaporización bar</th>
<th>Temperatura de vaporización °C</th>
<th>Calor latente de vaporización KJ/Kg</th>
<th>Efecto refrigerante KJ/kg</th>
<th>Desplaz. volumétrico l/s kw cap.</th>
<th>Potencia teórica del compresor Kw/Kw cap.</th>
<th>Temperatura de descarga °C</th>
<th>Coeficiente de rendimiento</th>
<th>Eficiencia volumétrica %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>1.97</td>
<td>-30</td>
<td>165</td>
<td>84.7</td>
<td>1.01</td>
<td>0.47</td>
<td>51</td>
<td>2.12</td>
<td>50</td>
</tr>
<tr>
<td>R-22</td>
<td>1.63</td>
<td>-30</td>
<td>226</td>
<td>414.0</td>
<td>0.96</td>
<td>0.41</td>
<td>76</td>
<td>2.14</td>
<td>47</td>
</tr>
</tbody>
</table>

TABLA 7
Características termodinámicas (aproximadas) del ciclo teórico de refrigeración a 46 °C temperatura de condensación y -1 °C temperatura de vaporización.

<table>
<thead>
<tr>
<th>Refrigerante</th>
<th>Efecto refrigerante KJ/Kg</th>
<th>Potencia teórica kW/Kw cap.</th>
<th>Coeficiente de rendimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-12</td>
<td>106.76</td>
<td>0.94</td>
<td>5.00</td>
</tr>
<tr>
<td>R-22</td>
<td>146.54</td>
<td>0.95</td>
<td>4.97</td>
</tr>
<tr>
<td>R-502</td>
<td>91.88</td>
<td>1.16</td>
<td>4.03</td>
</tr>
<tr>
<td>R-134a</td>
<td>132.58</td>
<td>1.20</td>
<td>3.88</td>
</tr>
</tbody>
</table>
Potencia teórica: Potencia requerida por el Compresor kW de potencia por kW de capacidad de refrigeración.

Coeficiente de rendimiento: Eficiencia del ciclo del refrigerante en términos de la relación de calor absorbido en el evaporador KJ/Kg y el calor de compresión KJ/Kg

7. **CONCLUSIONES Y RECOMENDACIONES**

a) Como puede observarse, de las diferentes condiciones establecidas en la Tabla 1, el R-12 y el R-502 son refrigerantes que no se recomiendan para ningún sistema nuevo en nuestro país por la prohibición que se tendrá después del año 2000, debido al reciente compromiso del Gobierno de Costa Rica. Estos refrigerantes se verán aún más reducidos por causa de esta prohibición. Lo anterior significa que a corto plazo, los precios serán muy elevados y sus existencias cada vez más reducidas (hay que tener en cuenta que debido al daño que hacen a la capa de ozono y al alto índice GWP ya no se fabrican en los Estados Unidos, nuestro principal suplidor).

De acuerdo con el Protocolo de Montreal, Costa Rica puede importar R-22 hasta el año 2040 (sus valores de ODP y GWP son muy bajos, como se pudo observar en la Tabla 2, casi comparable con R-134a que se está promoviendo como el refrigerante alternativo al R-12). Sin embargo, este refrigerante (R-134a) tiene dos problemas; primero, es mucho más caro (2,358/Kg) comparado con R-22 (890/Kg) y en segundo lugar, es un refrigerante que necesita mucho cuidado en su manejo debido a la gran afinidad que tiene el aceite lubricante empleado en sus sistemas con la humedad. Nuestros técnicos en refrigeración están apenas aprendiendo las técnicas necesarias para garantizar su empleo en forma segura.

b) En las Tablas No. 4, No. 5 y No. 6 se observa que el R-22 tiene más ventajas que desventajas comparado con el R-12; las únicas desventajas que tiene comparado con R-12 son relacionadas con la temperatura de descarga y el coeficiente de rendimiento. Según se observa en la Tabla 6 las únicas desventajas que tiene el R-22 comparado con el R-502 son la eficiencia volumétrica y la temperatura de descarga.

La desventaja de mayor importancia del R-22, según indican las tres tablas anteriores, es la temperatura de descarga y lo que se recomienda, especialmente en las aplicaciones de bajas temperaturas de vaporización, es que los compressores de R-22 tengan enfriamiento especial de las cabezas, por aire o agua.

c) En la Tabla 7, se comparan los cuatro refrigerantes R-12, R-22, R-502 y R-134a, en una aplicación de temperatura de vaporización media, con solo tres de las propiedades termodinámicas listadas; se observa que el efecto refrigerante del R-22 es mayor que el de los demás. Su potencia teórica y el coeficiente de rendimiento son prácticamente iguales a los del R-12 y mejores que los del R-502 y del R-134a. Por lo anterior se puede concluir que el R-22 no es solamente un refrigerante alternativo del R-12 y del R-502 debido a sus características termodinámicas sino, también, una buena alternativa para el R-134a.

Con base en las observaciones anteriores se recomienda analizar la posibilidad de emplear el refrigerante R-22 como alternativa para el diseño de nuevos sistemas que en el pasado se diseñaron para R-12 o R-502.

BIBLIOGRAFÍA

Imprenta Nacional, “Gaceta Oficial”, No.86 y No. 101
La República, Suplemento Tierra América, octubre 1997
RSES JOURNAL, Dec.1996
RSES SUPPLEMENT, 620-95A