
Ingeniería 33(2): 42-74, Julio-Diciembre, 2023. ISSN: 2215-2652. San José, Costa Rica DOI: 1015517/ri.v33i2.52079
73
[5] Ministry of Business, Innovation & Employment, Planning and engineering guidance for potentially
liquefaction-prone land. Wellington, Nueva Zelanda: Ministry of Business, Innonvation & Employment,
2017, p. 142.
[6] K. Ishihara, “Stability of natural deposits during earthquakes”, en Proceedings of the 11th International
Conference on Soil Mechanics and Foundation Engineering,1985, pp. 321-376.
[7] S. van Ballegooy, R, Green, J. Lees, F. Wentz y B. Maurer. “Assessment of various CPT based
liquefaction severity index frameworks relative to the Ishihara (1985) H
1
-H
2
boundary curves”, Soil
Dynamics and Earthquake Engineering, no. 79, pp. 347-364, 2015.
[8] T. Iwasaki, F. Tatsuoka, K. Tokida y S. Yasuda. "A practical method for assessing soil liquefaction
potential based on case studies at various sites in Japan”, Proceedings of the 2
nd
International Conference
on Micro zonation, 1978, pp. 885-896.
[9] B. Maurer, R. Green y O. Taylor. “Moving towards an improved index of assessing liquefaction
hazard: lessons from historical data”, Soils and foundations, no. 55, pp. 778 - 787, 2015.
[10] S. van Ballegooy, P. Malan, M. Jacka, V. Lacrosse, J. Leeves y J. Lyth. “Methods for characterizing
eects of liquefaction in terms of damage severity”, presentado en 15
th
World Conference on Earthquake
Engineering Lisboa, Portugal, 2012.
[11] K. Ishihara y M. Yoshimine, “Evaluation of settlements in sand deposits following liquefaction during
earthquakes”, Soil and foundations, no. 32, pp. 173-188, 1992.
[12] G. Zhang, P. Robertson y R. Brachman. “Estimating liquefaction-induced ground settlements from
CPT for level ground”, Canadian Geotechnical Journal, no. 39, pp.1168-1180, 2002.
[13] New Zealand Geotechnical Society, Earthquake geotechnical engineering practice Module 3:
Identication, assessment and mitigation of liquefaction hazards. Wellington, Nueva Zelanda: NZGS,
2016, p. 40.
[14] R. Boulanger. y M. Idriss. CPT and SPT based liquefaction triggering procedures. California, Estados
Unidos: University of California at Davis, 2014, p. 134.
[15] Google Maps. “Mapa de Jacó, Puntarenas”. googlemaps.com. https://www.google.com/maps/place/
Provincia+de+Puntarenas,+Jac%C3%B3/@9.6158125,-84.6436073,14z/data=!3m1!4b1!4m6!3m5!1s
0x8fa1c76ab9610c83:0x1bf37ea58fddf6!8m2!3d9.6202396!4d-84.6217487!16zL20vMGdnMHN2.
(accesado en Feb. 22, 2023).
[16] A. Gomez, H. Madrigal, C. Nuñez, H. Calderón y P. Jiménez. “Vulnerabilidad hidrogeológica en la
zona costera de Jacó, Pacíco Central, Costa Rica”, Revista Geográca de América Central, no. 63,
pp. 141-163, 2019.
[17] Comisión Nacional de Prevención del Riesgo y Atención de Emergencias de Costa Rica, “Mapa de
amenazas naturales potenciales cantón Garabito (en línea)”. https://www.cne.go.cr/reduccion_riesgo/
mapas_amenzas/puntarenas.aspx (accesado en Ago. 22, 2021).
[18] Red Sismológica Nacional, “Informe preliminar sismo de Jacó 12 de noviembre de 2017 (en línea).”
https://rsn.ucr.ac.cr/actividad-sismica/sismos-historicos. (accesado en Ago. 22, 2021).
[19] Red Sismológica Nacional, “Informe preliminar sismo de Jacó 24 de agosto de 2020 (en línea).”
https://rsn.ucr.ac.cr/actividad-sismica/sismos-historicos. (accesado en Ago. 22, 2021).
[20] R. Bogantes, G. Laporte, y C. Quesada. “Zonicación Geotécnica General de Costa Rica considerando
elementos edácos y climáticos”, presentado en VIII Seminario Nacional de Geotecnia y III Encuentro
Centroamericano de Geotecnistas, San José, Costa Rica, 2002, pp. 159-181.