MORPHOLOGICAL AND MOLECULAR CHARACTERIZATION OF SPECIES OF TULASNELLA (HOMOBASIDIOMYCETES) ASSOCIATED WITH NEOTROPICAL PLANTS OF LAELIINAE (ORCHIDACEAE) OCCURING IN BRAZIL

PAULO RICARDO M. ALMEIDA, CASSIO VAN DEN BERG & ARISTOTELES GOES-NETO

Introduction

Tullasnella spp. have been found forming mycorhizal associations with plants of all Orchidaceae subfamilies, and they are one of the main symbionts in partially micoheterotrophic plants (Taylor et al. 2002). Little is known about mycorhizal fungi of Neotropical Orchidaceae, especially in Laeliinae that occur in distinct environments such as “Restingas”, Seasonal Forests and “Campos Rupestres” (Cruz et al. 2003, Britto et al. 1993, França et al. 1997, Withner 2000).

Some few studies in completely mycoheterotrophic Epidendroideae have been shown that these plants form mycorrhizal associations mainly with fungi of the genera Russula, Thelephora, Sebacina, as well as other ectomycorrhizal Basidiomycetes in trees (Taylor and Bruns, 1999, 1997, Taylor et al. 2003, Selosse et al. 2002, Girlanda et al. 2006). There are other studies indicating a preferential association between basidiomycetous fungi and Orchidaceae plants as in Oncidinae with Ceratobasidium and Cyripedium with Tulasnella (Otero et al. 2002, 2004, Shefferson et al. 2005). These works suggest a putative specificity and recruiting of these plants in the environment where they occur.

Laeliinae plants have been intensively and indiscriminately collected in Brazil, leading to a significant reduction in their natural populations. In order to establish conservation strategies to these threatened plants as there is an indication in literature showing a preferential association between some specific fungi and Orchidaceae, the identity of symbiont fungi forming mycorhizal associations in Brazilian Laeliinae was studied, aiming to an efficient in situ and ex situ conservation.

Methodology

COLLECTION SITES AND ISOLATION OF FUNGI

Orchidaceae plants were collected from natural populations that occur in two distinct Brazilian States. A total of 20 natural populations, including plants of Laeliinae and Pleurothallidinae were sampled. From each population, one or two individual plants were collected and their roots were sampled in a period of one to two weeks since collection date. The individuals were selected from distinct environments (Tropical Rain Forest, “Restinga”, and “Campo Rupestre”) and the isolation of associated fungi was carried out according to Warcup and Talbot (1967).

MORPHOLOGICAL CHARACTERIZATION OF FUNGAL COLONIES

Fungal colonies were incubated for 30 days in PDA (potato-dextrose agar) and OA (3% oat meal agar) to induce the formation of monilioid cells, and they
were further analysed to determine the form, number and array of the cells. Macroscopic and microscopic somatic features of the colonies were also described. In order to analyse the nuclear condition, hyphal nuclei were stained according to Sneh et al. (1991).

Molecular characterization of fungal isolates

All the isolates were first cultivated in BDA for 15 days at 28 °C, including an *Epulorhiza epiphytica* Pereira, Rollemberg et Kasuya isolate, gently sent by Mycorrhizal Association Lab of the Federal University of Viçosa, Brazil. DNA extraction was carried out according to CTAB protocol (Doyle & Doyle, 1987). Double-stranded symmetric PCR reactions were carried out in 0.2-mL tubes in 50 µL reaction volume, using the primers ITS5 and ITS4 that amplify the Internal Transcribed Spacer (ITS region) of nuclear ribosomal DNA (White et al., 1990). PCR products were purified using EXOSAP and were sequenced in an automatic DNA sequencer (SCE 2410, Spectrumedix LLC). Chromatograms were edited using GAP4 software in Staden (Staden, 1996). Resulting sequences were compared to NCBI database, revealing that the isolates belonged to different lineages of *Tulasnella* including *T. violea* and *T. calospora*. Some sequences were considerably difficult to align and they were initially excluded from the phylogeny. In the phylogenetic tree (Fig. 2) some of the isolates represented lineages of *Tulasnella calospora* and others were lineages of *Epulorhiza epiphytica*, both of them significantly supported by bootstrap analysis. *E. epiphytica* is the only species described for Brazil and it was isolated from host plants that naturally occur in the State of Minas Gerais (Pereira et al. 2003). These results suggest that all the isolates are distinct lineages of *Tulasnella*, and that this possibly reflects the different environments where host plants occur.

Relationships between Laeliinae and Tulasnelaceae

In accordance to the results, although host plants live in completely different environments where the research availability is distinct, one can observe the strong trend of studied plants to form mycorrhizal associations with fungi of the genus *Tulasnella* (Almeida 2006). Studies on Australian orchids revealed that Diurideae plants has a strict specificity relationship with the fungi *Sebacina vermifera* and some lineages of *Tulasnella*, including *Tulasnella calospora*, which has been considered as a universal species (Rasmussen, 1995, Warcup, 1981, 1988, 1971). Inside Diurideae, all the studied species that belong to Drakaeinae and Diuridinae associate to *Tulasnella*, and all the studied species (except for those from genera *Lyperanthus* and *Bumettia*) that belong to Caladeniinae present a strict relationship with the fungi *Sebacina* (Warcup, 1981, Dressler, 1993). As all the isolates were obtained from pelotons, they are mycorrizal fungi.

Despite of the great advances obtained with the direct identification of fungi by molecular techniques such as PCR and sequencing, the morphological study of the isolates is still very important, mainly for the establishing of true biological entities or species.
FIGURE 2. Fungal internal transcribed spacer phylogeny suggesting that the isolates of Laeliinae form mycorrhizal associations with fungi of the genus Tulasnella. The arrows show where the isolates of Laeliinae are.
Currently these studies have been decreasing, which reflects, for instance, the insignificant number of anamorphic fungi of described *Epulorhiza* species (Currah and Zelmer, 1992, Zelmer and Currah, 1995, Currah et al. 1997a, Pereira et al. 2003), as well as the high number of sequences deposited in GenBank without any definition in the specific level (McCormick et al. 2004, Shefferson et al. 2005).

It is not known if this putative preference could be extended to all genera inside Laeliinae. Some studies has already pointed out this possible preferential relationship in the mycorrhizal association in some few species of Laeliinae (Curtis, 1939, Nogueira et al. 2005, Pereira et al. 2001, 2003, Zettler et al. 1999). Future investigations will be carried out in order to verify the pattern of mycorrhizal association in Laeliinae genera for the development of a future program of symbiotic propagation of threatened Brazilian species.

ACKNOWLEDGMENTS. I would like to thank all the logistics from the Research Lab in Microbiology (LAPEM), coordinated by Prof. Dr. Aristóteles Góes-Neto and from the Plant Molecular Systematics Lab (LABCOMOL), coordinated by Prof. Dr. Cássio van den Berg. I would also like to thank CNPq, FAPESB and the Mycorrhizal association Lab (Federal University of Viçosa, Minas Gerais, Brazil) by giving me a clone of *E. epiphytica* to be included in the phylogenetic analysis.

LITERATURE CITED

Currah, R.S., L.W. Zettler & T.M. McInnis. 1997a. *Epulorhiza inquilina* sp. nov. from *Platanthera* (Orchidaceae) and a Key to *Epulorhiza* Species. Mycotaxon 61: 338-342.

Sunderland: Sinquer.

Paulo Ricardo Almeida is CNPq Scholarship/graduate student – Msc. student in Botany from State University of Feira de Santana. The first work was developed during the undergraduate course focusing on the mycorrhizal association in subtribe Laeliinae. These work culminated in the Bachelor’s monograph, “Mycorrhizal association in subtribe Laeliinae (Orchidaceae)”. Currently, he is working with populations of two species of *Encyclia* from distinct environments that occur in the state of Bahia, Brazil. The following questions are being addressed in this study: (i) if there is a putative preference in this association and (ii) if both plant species have distinct symbionts, and aiming to an efficient *in situ* and *ex situ* conservation of these plants.

Cassio van den Berg is graduated in Agriculture at Universidade de São Paulo, Brazil, has a master degree in Ecology at Universidade Estadual de Campinas, Brazil, and a PhD in Botany from the Royal Botanical Gardens, Kew and University of Reading, UK. Currently he is full professor at Universidade Estadual de Feira de Santana, Brazil, with research focus on orchid systematics, plant molecular systematics and plant population genetics.

Aristóteles Góes-Neto is graduated in B.Sc. in Biology, Federal University of Bahia (UFBA), Brazil (1994) and Ph.D. in Botany, Federal University of Rio Grande do Sul (UFRGS), Brazil (2001). Currently, he is titular professor of the Dept. of Biology, State University of Feira de Santana (UEFS), Brazil, coordinator of Research Laboratory in Microbiology (LAPEM), and coordinator of Graduate Program in Biotechnology (M.Sc. and Ph.D. levels) at the same University. He is also member of the Scientific and Technical Chamber of Biological Sciences and Environment of the Science Foundation of the State of Bahia, Brazil (FAPESB). His research lines include Diversity and Evolution, Genomics/Proteomics, and Biotechnology of Fungi with emphasis on Basidiomycota.

