AN ORCHID INVENTORY AND CONSERVATION PROJECT AT BOSQUE DE PAZ BIOLOGICAL RESERVE, UPPER RIO TORO VALLEY, ALAJUELA, COSTA RICA

Melania Muñoz^{1,3} & Stephen H. Kirby²

¹Jardín Botánico Lankester, Universidad de Costa Rica, P.O. Box 1031-7050, Cartago, Costa Rica. ²U.S. Geological Survey, Menlo Park, California 94025, U.S.A. ³Author for correspondence: melaniamunozg@yahoo.com

RESUMEN. El Jardín de Orquídeas de la reserva fue creado en el año 2000. Allí, las orquídeas caídas de los árboles del bosque son rescatadas, reubicadas y conservadas en árboles vivos (principalmente güitite, jaul y poró). Los objetivos del proyecto son: aumentar el conocimiento de la diversidad de orquídeas de la Cuenca del Río Toro mediante un inventario, respaldado por fotografías y material de herbario seco y en líquido, de las orquídeas rescatadas del bosque y cultivadas en el Jardín de la reserva y dar a conocer dicha reserva como ejemplo de ecoturismo educativo y sitio de gran importancia para la investigación orquideológica. El inventario se ha llevado a cabo desde junio del 2004. Se han identificado 47 géneros y 163 especies; 12 de éstas son endémicas de Costa Rica. En promedio, se observan 40 especies en floración cada mes. El hecho de que el Jardín de Orquídeas está situado junto a una reserva de vegetación natural, es una ventaja que puede aprovecharse para investigar sobre taxonomía y ecología de orquídeas de la región. Además de las opciones de investigación, Bosque de Paz realiza una importante labor en educación ambiental. Este inventario y la colección de herbario resultante son herramientas importantes para la investigación en orquideología. Consultar una colección de este tipo es de mucha utilidad tanto para estudios taxonómicos como ecológicos, en vista de que pocas veces se cuenta, como en este caso, con observaciones de plantas vivas, datos fenológicos, fotogra-fías y material preservado, al mismo tiempo.

Orchids are among of the best-known and beloved plants, not only by scientists, but also by amateurs, and have a high commercial demand thanks to their beautiful, diverse and interesting flowers (Herrera 1998). It is the largest family of flowering plants in the world, with around 20,000 species (Dressler 1993). In Costa Rica there are around 1,400 registered species of orchids, but the knowledge of this family has grown a lot in recent years. Since 1993, around 20 new species have been described each year, and their classification is constantly changing because of molecular studies (Dressler 2003).

On the other hand, orchids are one of the most threatened groups of plants. Many species are considered endangered (Salazar 1996, Morales 2000). Most of the Orchidaceae family is included in the Appendices of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), which main objective is to regulate international trade to prevent species extinction because of this trade (or their overexploitation) (von Arx 1996).

Human activities have been causing, directly or indirectly, a decrease in orchid population sizes. The habitat alteration, including total destruction, modification and fragmentation, is the main problem for the conservation of the diversity. Most of the tropical orchids grow in primary forests. Some species are probably more tolerant to forest fragmentation than others; hence those less tolerant populations will decline more rapidly when habitats are altered. Another important threat is the illegal exploitation. A lot of plants are illegally collected from nature and sold (Salazar 1996, Morales 2000).

The main requirement for orchid conservation is therefore the maintenance of natural habitats (Light 2000, Catling 1996). The objective of *in situ* conservation is to allow species to be in the habitat where they belong and in the environment to which they are adapted (BGCI 1989). *Ex situ* conservation is the maintenance of organisms out of their natural habitat, for example in botanical gardens, field collections, and others, and its objective is to ensure the conserva-

tion of endangered species. *Ex situ* conservation is justifiable only when it is part of an integral conservation strategy (BGCI 1989).

The establishment of small natural reserves, sustained by private institutions, is an important strategy that complements the effort of the State to create and maintain the National Park System. In this way, a coordinated effort is made to conserve the Costa Rican natural and cultural patrimony (Fournier and Herrera 1979). Bosque de Paz is a private biological reserve located in the Central Volcanic Range. It has both primary and secondary forests, as well as grazing and in various states of reforestation (Kirby 2003). The Reserve was created with the objective of protecting the flora and fauna of the zone, and to create public awareness of the importance of conservation. The idea to relocate orchids for public viewing and scientific study began in the mid-90's. After major storms with high winds and heavy rain occur, large number of branches and trees, full of epiphytic plants, fell across 20 km of trails in the Reserve. These orchids would die eventually due to low light and high humidity conditions. Fallen plants were subsequently rescued, and some of the orchid diversity of the area is now made accessible to visitors (Kirby 2003). In 1996 the Reserve had orchids relocated at eye level on trees along a 75 meter-long trail. In 2000, the Orchid Garden was created, at an elevation of about 1,550 meters above sea level, at 10°12.425' N latitude and 84°19.140' W longitude. The orchids are located on trees and live trunks.

To preserve orchid diversity, it is necessary to know which species exist, where they are located and basic aspects about their ecology and frequency in nature (Dressler 1996). Ideally, live plants in collections should be studied, but not every grower knows where their plants come from. In practice, one of the most common ways to obtain this kind of information is by visiting museums and herbariums, where dry material, sometimes complemented with flowers preserved in alcohol, can be found (Dressler 1996). Moreover, more elaborate surveys that give diversity, endemism, density and blooming data of the orchids present in a specific area, are even more valuable because they increase the knowledge of the distribution and ecology of the species, especially the rare ones (Soto 1996).

Surveys of plants present in National Parks, botanical gardens, as well as that of the biological preserves and private collections, are essential for the use of these places in conservation and research. Because of this, it is important to perform both taxonomic studies as sources of information about the species diversity in different places of the country, and ecological studies to know the habitat and the environmental conditions where the native orchids grow, as well as obtaining fundamental information on orchid biogeography (Kirby this volume). This study is believed to be the first comprehensive, multi-year collection, description and identification of orchids in the Central Volcanic Range in Costa Rica. The objective of this paper is to provide a species inventory of native orchids from the Río Toro Valley, Valverde Vega, Alajuela, as a baseline for conservation and starting point for orchid research in this region.

Methodology

An orchid survey at Bosque de Paz Biological Reserve has been in progress since June of 2004. Monthly field trips to the Reserve were made in order to sample blooming species. A herbarium collection was created and is currently maintained at the Reserve. Flowers were collected and preserved in liquid (55% alcohol, 5% glycerin and 40% water) as well. Every species was photographed and described using the checklist described by Kirby and Muñoz (this volume). Nomenclature follows that used by Dressler (2003). The blooming dates of every species were recorded and the identified plants were all labeled in the Orchid Garden.

Results

In the study period, 163 orchid species were observed in bloom and described, of which 12 species are endemics to Costa Rica. These were distributed into 47 genera. The genera with greatest number of species in the garden are: *Epidendrum* (24 spp.), *Pleurothallis* (23 spp.), *Maxillaria* (22 spp.) *Stelis* (10 spp.), *Lepanthes* (8 spp.), *Masdevallia* (7 spp.), *Prosthechea* (6 spp.), *Elleanthus* (5spp.), *Platystele* (4 spp.) and *Scaphyglottis* (4 spp.) (Table 1). On average, 40 (±11) species were observed in bloom each month. The months with more species in bloom were October, November and

TABLE 1. Orchid list of Bosque de Paz Biological Reserve.

Name	Field number	Name	Field number
cineta densa	04_98 (97)	Masdevallia sp.	06_240
da chlorops ^a	04 105	Masdevallia calura E	04_80
arbosella dolichorhiza ^a	04_126	Masdevallia chontalensis	05_205
rassia arcuigera	-	Masdevallia nidifica	06_212
<u> </u>	05_174	Masdevallia picturata	06_234
hondrorhyncha picta ^a	04_100	Masdevallia pygmaea	06_228
yptocentrum calcaratum	04_104	Masdevallia striatella ^a	04_131
ichaea glauca ^a	04_147	Maxillaria (5 spp.)	04 96 ^a / 05 189/ 06 21
ichaea schlechteri E	04_128	<i>махнана</i> (3 spp.)	06 227/ 06 237/
ichaea trichocarpa	04_75	16 :11 :	
racula carlueri	05_175	Maxillaria angustisegmenta ^a	04_110
leanthus (2spp.)	06_220/ 06_238	Maxillaria biolleyi	04_146
leanthus cynarocephalus	04_77	Maxillaria bradeorum	05_163
leanthus glaucophyllus	05_173	Maxillaria brevilabia	04_148
leanthus lancifolius ^a	05_180	Maxillaria cucullata	04_140
ıcyclia ceratistes	04_82	Maxillaria dendrobioides ^a	04_141
pidendrum (8 spp)	04_115 ^a / 04_156/ 05_177/	Maxillaria flava	06_235
(11)	05-187/ 06 210/ 06 216/	Maxillaria fulgens	04_74
	06 221/06 236/	Maxillaria inaudita	04_145
pidendrum firmum	04_136	<i>Maxillaria microphyton</i> ^a E	05_176
oidendrum lacustre	_ b	Maxillaria nasuta	04_123
pidendrum lancilabium	05 204	Maxillaria porrecta	04_125
pidendrum laucheanum	04_93	Maxillaria pseudoneglecta ^a	04_127
pidendrum myodes	05-184	Maxillaria ringens	04_124
oidendrum palmense E	05 162	Maxillaria sigmoidea	06_239
pidendrum parkinsonianum	04 157	Maxillaria umbratilis	06_208
oidendrum piliferum	04 91	Maxillaria wercklei E	05_192
oidendrum platystigma E	05-181	Miltoniopsis warscewiczii	04_132
pidendrum radicans	04 154	Oerstedella endresii	04_143
pidendrum sancti-ramoni ^a	_	Oerstedella exasperata	04_70
	05_161	Oerstedella intermixta E	04_107
oidendrum subnutans ^a E	04_137(155)	Oncidium	04_152
pidendrum summerhayesii	05-186	Oncidium bracteatum	04_81 (83)
oidendrum wercklei	b	Oncidium klotzschianum	04_129
rythrodes killipii	06_215	Oncidium panduriforme ^a	04 85
urysyles standleyi E	07_243	Osmoglossum egertonii	04 134
ongora horichiana	04_112	Otoglossum chiriquense	06_232
ovenia quadriplicata	06_224	Phragmipedium longifolium ^a	04 92
oulletia tigrina	06_231	Platystele compacta	04_92
eochilus tricuspidatus	04_130	, I	_
epanthes (7spp.)	05_158/ 05_164/ 05_190/	<i>Platystele lancilabris</i> ^a E	05_166
	06_207/ 06_214/ 06_217/	Platystele oxyglossa ^a	04_103
	06_219/	Platystele propinqua ^a E	04_113
epanthes crossota	04_114	Pleurothallis (10 spp.)	04_101 ^a /04_116 ^a /
ockhartia hercodonta	06_241	(10 SPP.)	04 120/ 04 139/ 04 15
ockhartia oerstedii	04_102		05-188/ 06_211/ 06_21
ckhartia oerstedii ^a	05_178		06_230/ 06_242/
vcaste macrophylla	04_99		

E = Endemic species to Costa Rica. a = Samples with duplicates in the Herbarium of the University of Costa Rica. b = Not collected plants, just identified in the Orchid Garden.

TABLE 1 (continuation). Orchid list of Bosque de Paz Biological Reserve.

Name	Field number	Name	Field number
Pleurothallis cardiothallis ^a	04_108	Scaphyglottis pachybulbon ^a	04_149
Pleurothallis costaricensis ^a	05 165	Scaphyglottis pulchella	04_84
Pleurothallis dentipetala	05_203	Scaphyglottis sigmoidea ^a	04_86
Pleurothallis eumecocaulon	04_133	Sigmatostalix picta	04_90
Pleurothallis johnsonii	04_117	Sobralia amabilis	06_233
Pleurothallis palliolata	05_202	Sobralia leucoxantha	06 225
Pleurothallis phyllocardioides ^a	04_118	Solenocentrum costaricense	04_76
Pleurothallis pompalis ^a	04 88	Stanhopea costaricensis	06_226
Pleurothallis ramonensis E	04 87	Stelis (8 spp).	04_142/ 04_144/ 05_167 ^a /
Pleurothallis ruscifolia	04_72		05_170/ 05_174/ 05-182/
Pleurothallis tonduzii ^a	04 95		05-183/ 05-185
Prosthechea sp.	06_206	Stelis gracilis ^a	04_109
Prosthechea brassavolae ^a	04 106	Stelis ovatilabia	04_119
Prosthechea campylostalix ^a	05 168	Systeloglossum costaricense	06_229
Prosthechea ionocentra	04_94	Telipogon biolleyi	04_71
Prosthechea pseudopygmaea	04 138	Trichopilia marginata	06_209
Prosthechea vespa	05_193	Trichopilia suavis	04_122
Restrepia muscifera ^a	04 135	Trichosalpinx sp.	06_216
Restrepia trichoglossa	04_121	Trichosalpinx memor	05_159
Rossioglossum schlieperianum	05_179	Trichosalpinx memor	05_160
Salpistele brunnea	05_191	Warszewiczella discolor	04 150
Scaphosepalum anchoriferum	04_79	Xylobium elongatum	04 111
Scaphyglottis densa ^a	05_169	Xylobium sulfurinum	04_73

E = Endemic species to Costa Rica. ^a = Samples with duplicates in the Herbarium of the University of Costa Rica. ^b = Not collected plants, just identified in the Orchid Garden.

December (Fig. 1). Dried herbarium sheets were prepared from plants and flowers of 149 species and flowers from 139 species were preserved by pickling. Duplicates of 36 species were deposited in the Herbarium of the University of Costa Rica (USJ).

Discussion

Having more than 160 species registered so far, with at least 12 being endemic, Bosque de Paz can now be recognized as a key site for *in situ* conservation of orchids in Costa Rica. With an area of 2000 hectares and with elevations ranging between 1,300 and 2,450 meters, the Reserve brings a big, little fragmented area, with modest human impact and with several microhabitats that support the existence, reproduction and other natural biological processes of an important number of orchids.

Bosque de Paz is a natural reserve, which has had success in the conservation of a group of plants as vul-

nerable as orchids. This also reflects success in the conservation of other plant families present in the zone. Moreover, the Orchid Garden could be considered a potential bank of germoplasm in the field (BGCI 1989). Field collections like this are better than conventional ones, because they have very similar characteristics to the natural habitat. The relocated plants have similar elevation, rainfall, temperature and pollinators where they were found. According to BGCI (1989) such collections should be the main ex situ conservation strategy. The Garden is located just next to an important natural forest, which is an advantage that could be further exploited for the taxonomic, ecologic and biogeografic studies of the region. Since it is the first multi-year orchid survey in the Central Volcanic Range, it is a starting point for comparisons with other montane cloud-forest environments in Costa Rica and elsewhere in Latin America (see Kirby, this volume).

Furthermore, one of the most important roles of

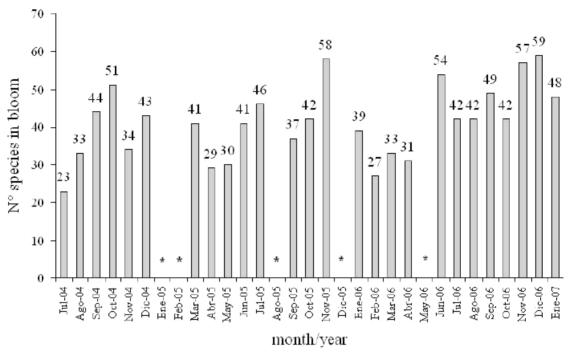


Figure 1. Number of species observed in bloom from July 2004 to January 2007 in the Orchid Garden of Bosque de Paz Reserve. *Data not collected.

natural preserves is to educate the people who visit them (Head and Lauer 1996). The creation of an orchid garden is therefore important for environmental education of both national and foreign tourists, because thanks to it, there is a great number and diversity of blooming orchid species that can be easily seen in the garden throughout the year, and are difficult to observe in their natural habitat. This educational opportunity helps to create consciousness about Costa Rica's natural richness, the enormous orchid diversity, the problems that make their conservation difficult, and that everybody can do something for their protection, such as the simple action of not taking them from their natural habitats.

Orchid surveys such this one are also valuable tools for orchid scientists. High-resolution digital and printed photographs, high quality herbarium samples, both dry and pickled specimens, with duplicates in the Herbarium of the University of Costa Rica (USJ) are provided. Access to a collection like this one could be very useful to researchers for taxonomic studies, for which there is limited preserved material,

especially for those less conspicuous and rare species. Accurate species identifications also will be useful for population studies and orchid biogeography.

To conclude, Bosque de Paz Biological Reserve reflects the great orchid diversity of the area. Moreover, the reserve's Orchid Garden is a very important place for conservation, research and environmental education in several fields, with an obvious emphasis in orchideology.

ACKNOWLEDGMENTS. The authors wish to thank Carlos O. Morales and Robert Dressler for their generous help in the identification of some species. To Piero Protti for his help in the field collection, preparation of the herbarium material, and in the elaboration and advice for this paper. To Vinicio Porras for his help in the field and the Orchid Garden maintenance. This project is made possible by the support of Bosque de Paz Biological Reserve.

LITERATURE CITED

BGCI (Botanical Gardens Conservation International). 1989. La estrategia de los Jardines Botánicos para la Conservación. BGCI, WWR y UICN. Suiza. 51 p. Catling, P.M. 1996. Conservation Strategy: *In situ* conservation. Pp. 15-23. *In:* E. Hágsater & V. Dumont (eds.). Orchids – Status Survey and Conservation Action Plan. IUCN. Gland Switzerland and Cambridge, UK.

Dressler, R.L. 1993. Phylogeny and Classification of the Orchid Family. Dioscorides Press. Hong Kong. 314 p.

Dressler, R.L. 1996. The problems associated with botanical sampling and study. P. 34 *in:* E. Hágsater & V. Dumont (eds.). Orchids- Status Survey and Conservation Action Plan. IUCN. Gland, Switzerland and Cambridge, UK.

Dressler, R.L. 2003. Orchidaceae. *In*: Hammel, B. E., Grayum, M. H., Herrera, C. & Zamora, N. (eds.). Manual de Plantas de Costa Rica, vol III: Monocotiledóneas (Orchidaceae-Zingiberaceae). Missouri Bot. Gard. INBio. Museo Nacional de Costa Rica. Pp. 1-595.

Fournier, L.A. & M.E. Herrera. 1979. Importancia científica, económica y cultural de un sistema de pequeñas reservas naturales en Costa Rica. Agron. Costarr. 3(1): 53-55.

Head, C. & A. Lauer. 1996. Conservation Strategy: Education. Pp. 46-47 *in*: E. Hágsater & V. Dumont (eds.). Orchids – Status Survey and Conservation Action Plan. IUCN. Gland Switzerland and Cambridge, UK.

Herrera, A. 1998. Factibilidad técnica y financiera para la producción *in vitro* de orquídeas (*Masdevallia calura y Masdevallia reichenbachiana*) en Monteverde, Puntarenas. Tesis de Licenciatura en Economía Agrícola, Universidad de Costa Rica, San José. 149 p.

Kirby, S.H. 2003. Neotropical orchid eco-tourism: educa-

tional experience of an orchid neophyte at The Bosque de Paz Biological Preserve, Central Volcanic Range, Costa Rica. Lankesteriana 7: 121-124.

Kirby, S.H. 2007. Geological Processes and Orchid Biogeography with Applications to Southeast Central America. Proceedings of the 3rd International Orchid Conservation Congress *in* Lankesteriana, this volume.

Kirby, S.H. & M. Muñoz. 2007. A form and checklist for the description of orchids in the field and laboratory work. Costa Rica. Proceedings of the 3rd International Orchid Conservation Congress *in* Lankesteriana, this volume.

Light, M.H.S. 2000. *In situ* orchid conservation: challenge and opportunity. Orchid Conserv. News 3: 4-5.

Morales, J.F. 2000. Orquídeas, cactus y bromelias del bosque seco. INBio. Santo Domingo de Heredia, Costa Rica. 162 p.

Salazar, G.A. 1996. Conservation Threats. Pp. 6-10 in: E. Hágsater & V. Dumont (eds.). Orchids- Status Survey and Conservation Action Plan. IUCN. Gland, Switzerland and Cambridge, UK.

Soto, M. 1996. Conservation Strategy: The importance of research. Pp. 33-38. *In:* E. Hágsater & V. Dumont (eds.). Orchids – Status Survey and Conservation Action Plan. IUCN. Gland, Switzerland and Cambridge, UK.

von Arx, B. 1996. Conservation Strategy: International Protection. Pp. 11-14. *In:* E. Hágsater & V. Dumont (eds.). Orchids – Status Survey and Conservation Action Plan. IUCN. Gland, Switzerland and Cambridge, UK.

Melania Muñoz earned her B.S. in Biology at the University of Costa Rica in 2003. She is currently working on her Master's degree in Biotechnology at the same University. Her research involves both population genetics and *in vitro* culture of orchids. She is also a research assistant at the Lankester Botanical Garden. She has been the biologist in charge of the inventory of the Orchid Garden and the preparation and maintenance of the herbarium material at Bosque de Paz Biological Reserve since 2004.

Stephen H. Kirby was awarded a Ph.D. in Geology in 1975 from the University of California at Los Angeles. He has been employed by the U.S. Geological Survey since 1968 and is currently a Research Geophysicist and Senior Scientist in the Earthquake Hazard Team in Menlo Park, California. He is a fellow of the American Geophysical Union and the Mineralogical Society of America. He is an author of more than 160 peer-reviewed papers and book chapters and has worked as a volunteer at the Bosque de Paz Biological Reserve since 2002.